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WARM-UP



BALL & BAT (KAHNEMAN & FRANK)

➤ A ball and a bat together cost $1.10.
➤ The bat costs $1 more than the ball.
➤ How much does the ball cost?



AN EXAMPLE FROM HECTOR LEVESQUE

Jack is looking at Anne, but Anne is looking at George. Jack is 
married, but George is not. Is a married person looking at an 
unmarried person?
(a) Yes
(b) No
(c) Not enough information to determine



LINGUISTIC REASONING

Some zookeepers are pacifists
No pacifists are troglodytes

Some zookeepers are not troglodytes



MORE RIDDLES HERE

https://www.youtube.com/watch?v=7Vd1dTBVbFg&list=PLJicmE8fK0EiFRt1Hm5a_7SJFaikIFW30


MORE RIDDLES HERE

https://www.youtube.com/watch?v=7Vd1dTBVbFg&list=PLJicmE8fK0EiFRt1Hm5a_7SJFaikIFW30


“The sole end of logic is to explain the 
principles and operations of our 
reasoning faculty.

-David Hume



INTRODUCTION



LOGICAL MODELING
➤ Sometimes also called Declarative/Symbolic modeling.
➤ Goal: To systematize (parts) of cognition on the concept of 

logical system and the notion of reasoning and computing in 
such systems.

➤ The oldest paradigm for modeling the mind (since Aristotle)
➤ Good at: finding certain intrinsic (context-independent, 

combinatorial) structures that predict and explain human 
thinking. 

➤ Top-down information processing systems, often closely link 
with AI.



DIVIDE BETWEEN LOGIC AND PSYCHOLOGY
➤ Kant: logical laws as the fabric of thoughts 
➤ 19th century: logic=psychologism (Mill) 
➤ Frege’s anti-psychologism enforced separation 
➤ 19/20th century beginnings of modern logic and psychology
➤ ’60 witness the growth of cognitive science but also semantic 

and computational turn in logics pivoting around the notion of 
interpretation and processing. 



EXAMPLE: THE WASON SELECTION TASK 

If there is a D on one side of the card, then there is a 3 on the other. 
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EXAMPLE: THE WASON SELECTION TASK 

If a person is drinking beer, then the person must be over 18. 

If there is a D on one side of the card, then there is a 3 on the other. 

Reasoning `to’ and `from’ the interpretation (van Lambalgen and 
Stenning, 2008)



LEVELS OF INFORMATION PROCESSING

1. Computational level: specify cognitive task
2. Algorithmic level: the algorithms that may be used 
3. Implementation level: how this is actually done in the brain

Marr’83



HOW LOGIC CONTRIBUTES?

➤ Helps to rigorously formulate `problems’
➤ Logic informs about intrinsic properties of a problem
➤ Structural properties correlate with human performance 
➤ Logic captures inherent cognitive complexity



EXPLORING RECENT CASE STUDIES

➤ Categorization 
➤ Syllogistic reasoning
➤ Processing meaning
➤ Reasoning about others
➤ Strategic reasoning
➤ Problem solving
➤ …



TOPIC 0: BOOLEAN CATEGORIZATION



BOOLEAN RELATIONS
➤ Boolean relations are a way to create new concepts:

`cousin’ is a child of an uncle or aunt
‘beer’ is an alcoholic beverage usually made from malted 
cereal grain and flavored with hops, and brewed by slow 
fermentation
in basketball, `travel’ is illegally moving the pivot foot or taking 
three or more steps without dribbling
`depression’ is a mood disorder characterized by persistent 
sadness and anxiety, or feeling of hopelessness and 
pessimism, or …



QUESTIONS

➤ How people acquire, represent, and use concepts?
➤ E.g., concepts depending on and are easier to learn than 

those depending on or (Bruner et al. `65).
➤ But the data seems more puzzling (see next slide). 
➤ What’s the logical theory of complexity here?



SHEPARD TREND
➤ Six different sorts of concept based on three binary variables
➤ Each concept: 4 instances and 4 non-instances in 8 possibilities
➤ Different presentations methods: sequentially, simultaneously, etc.
➤ Dependent variables: errors, latencies, accuracy of descriptions, 

etc.
➤ I < II < III, IV, V < VI

Shepard et al.’61



THE INSTANCES OF THE CONCEPTS

Concept number Instances

I
not-a b c

not-a b not-c
not-a not-b c

not-a not-b not-c

II
a b c

a b not-c
not-a not-b c

not-a not-b not-c

III
a not-b c

not-a b not-c
not-a not-b c

not-a not-b not-c

IV
a not-b not-c
not-a b not-c
not-a not-b c

not-a not-b not-c

V
a b c

not-a b not-c
not-a not-b c

not-a not-b not-c

VI
a b not-c
a not-b c
not-a b c

not-a not-b not-c



BOOLEAN COMPLEXITY

➤ The length of the shortest Boolean formula logically equivalent 
to the concept, e.g., expressed in terms of the number of 
literals (positive or negative variables).

➤ ~ Intrinsic mathematical complexity of the concept. 
➤ ~ Kolmogorov complexity of `incompressibility’. 
➤ Btw, finding the shortest formula is intractable. 
➤ (a and b) or (a and not b) or (not a and b) reduces to (a or b)



BOOLEAN COMPLEXITY AND DATASET

➤ Minimal description predicts learning difficulty (Feldman ’01). 
➤ But (a and b) < (a or b)
➤ So parity assumption: concepts with fewer instances than non-

instances should be easier to learn than those with fewer non-
instance than instances.



CAPTURES SHEPARD TREND

Concept 
number Instances Minimal 

description

I
not-a b c

not-a b not-c
not-a not-b c

not-a not-b not-c
not a (1)

II
a b c

a b not-c
not-a not-b c

not-a not-b not-c

(a and b) or (not a and not 
b) (4)

III
a not-b c

not-a b not-c
not-a not-b c

not-a not-b not-c

(not a and not c) or (not b 
and c) (4)

IV
a not-b not-c
not-a b not-c
not-a not-b c

not-a not-b not-c

(not c or (not a and not b)) 
and (not a or not b) (5)

V
a b c

not-a b not-c
not-a not-b c

not-a not-b not-c

(not a and not (b and c)) or 
(a and (b and c)) (6)

VI
a b not-c
a not-b c
not-a b c

not-a not-b not-c

(a and ((not b and c) or (b 
and not c))) or

(not a and ((not b and not 
c) or (b and c))) (10)



NEW DATA SET
➤ Consider an arbitrary Boolean concept defined by P positive 

examples over D binary features.
➤ For Shepard types D=3 and P=4. 
➤ Feldman studies 76 Boolean concepts.

Feldman `01



RESULTS
➤ Boolean complexity accounts 

for 50% of variance in the 
dataset. 

QUESTIONS
➤ Which Boolean connectives?
➤ Constructing minimal 

descriptions is intractable.
➤ Parity itself explains 20% of 

variance. 
➤ So, a recent flurry of alternative 

models: Feldman `06, Vigo 
`09, Goodwin et al. `13,…



BOOLEAN LANGUAGE COMPARISON
➤ Bayesian concept learning model (Goodman et al., `08).
➤ Bayesian data analysis model: which representational system 

is the most likely, given human responses?

Piantadosi et al. `16



TOPIC 1: SYLLOGISTIC REASONING

Logic Probability

explanation prediction
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TOPIC 1: SYLLOGISTIC REASONING

Logic Probability

explanation prediction

Natural Logic 
Machine Learning
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CASE STUDY
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CASE STUDY

1. All aardvarks are insectivores.
2. All Orycteropodidae are aardvarks.
3. 90%: All Orycteropodidae are insectivores.
4. 5%: Some Orycteropodidae are insectivores.
5. 5%: Others, including erroneous. 
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PLAN OF ACTION

Reasoning Natural Logic Data-driven 
Cognitive Models 

Psychology

Computation

Linguistics

Machine 
Learning

Experiments
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PSYCHOLOGICAL THEORIES OF REASONING

Bayesian Rationality

Mental Models Mental Logic

⊆



MENTAL LOGIC

➤ Rips (1994):
➤ Formulas as the underlying mental representations
➤ Inference rules are the basic operations
➤ PSYCOP based on Natural Deduction
➤ You can think about proofs as computations



MENTAL LOGIC’S SHORTCOMINGS

➤ Abstract rules and formal representations
➤ Based in natural deduction for FOL
➤ Ad hoc `psychological completness’
➤ Explains only validities, no story on mistakes
➤ No learning or individual differences



QUICK FIX: NATURAL LOGIC PROGRAM

using linguistic constructs directly as vehicles of inference
➤ van Benthem 1986, Sánchez-Valencia 1991:
➤ They are natural!

➤ All aardvarks are insectivores.
➤  
➤ All (Aardvarks, Insectivores)

➤ They scale up!

8x[Aardvark(x) =) Insectivore(x)]

32Pratt-Hartmann’04



BENCHMARK TASK: SYLLOGISTICS
➤ All A are B : universal affirmative (A) 
➤ ︎Some A are B: particular affirmative (I) 
➤ ︎No A are B: universal negative (E) 
➤ ︎Some A are not B: particular negative (O) 

Figure 1:
BC
AB
AC

Figure 2:
CB
AB
AC

Figure 3:
BC
BA
AC

Figure 4:
CB
BA
AC

EA2E:
No C are B
All A are B
No A are C



VALID REASONING
➤ An argument is valid if and only if it takes a form that makes it 

impossible for the premises to be true and the conclusion 
nevertheless to be false.

➤ True under every interpretation.

All men are mortal. 

Socrates is a man. 

Therefore, Socrates is mortal.

Some men are famous. 

Socrates is a man. 

Therefore, Socrates is famous.



DATA - SYLLOGISTIC REASONING

Chater and Oaksford’99



GEURT’S 2003 MODEL

➤ Logic including syllogistics and pivoting on monotonicity:
➤ All-Some: `All A are B’ implies `Some A are B’.
➤ No-Some not: `No A are B’ implies `Some A are not B’.
➤ Conversion1: `Some A are B’ implies `Some B are A’;
➤ Conversion2: `No A are B’ implies `No B are A".
➤ Monotonicity: If A entails B, then the A in any upward entailing 

position can be substituted by a B, and the B in any downward 
entailing position can be substituted by an A.

➤ Extra rule: `No A are B’ and `Some C are A’ implies `Some C are 
not B’.



MONOTONICITY EXPLAINED

➤ Some boy is dirty so Some child is dirty. (upward)
➤ All children are dirty so All boys are dirty. (downward)
➤ Some not? No?



EXAMPLE OF A SYLLOGISTIC PROOF

38

No C are B  (1)
All A are B   (2)
No B are C  (3)       Conversion (1)
No A are C  (4)       Monotonicity (2,3)



INHERENT COMPLEXITY
➤ The shorter the proof the easier the syllogism.
➤ Initial budget of 100 units. Each use of the monotonicity rule 

costs 20, the extra rule costs 30; a proof containing a "Some 
Not" proposition costs an additional 10 units. Take the 
remaining budget as an evaluation of the difficulty. 

➤ It gives a good fit with data.

Predicted difficulty and data

Geurts’03



SHORT-COMINGS OF GEURTS’ APPROACH

➤ Arbitrary set of rules
➤ Arbitrary weights
➤ But we can learn these from the data



PROBABILISTIC INFERENCE

41

➤ Geurts’ logic
➤ Tree representation: states linked by reasoning events
➤ No vapid transitions



PROBABILITIES
➤ Tendency value, wr: an `easier ‘rule is adopted with higher 

probability, while a more difficult one is adopted with lower 
probability.

➤ wr  is a weight estimated (for every rule r) from the data
➤ cr the number of ways that rule r can be adopted at S
➤ wG reserves probability mass for `terminating' the inference at 

state  S and making a heuristic guess



EXAMPLE: OE1



THE OUTPUT OF THE MODEL

➤ A probability with which a syllogism is endorsed.
➤ 5 possible conclusions: A, I, E, O, NVC.
➤ We model transition probabilities.
➤ We compute the probability that a given conclusion is drawn. 



THE OUTPUT OF THE MODEL

➤ A probability with which a syllogism is endorsed.
➤ 5 possible conclusions: A, I, E, O, NVC.
➤ We model transition probabilities.
➤ We compute the probability that a given conclusion is drawn. 

s1, s2

P3

w1 w2

w3 w4 w5

P1 P2



TRAINING
➤ Subset of the data from Chater and Oaksford (1999).
➤ We use the generalized expectation maximization:  there is no 

closed-form solution for the M step.
➤ Compute:



EVALUATION
➤ The Khemlani and Johnson-Laird (2012) method.
➤ Detection theory.
➤ They assume there is a lot of random noise in the data.



PERFORMANCE

➤ 95,8% correct predictions on syllogisms 
with at least one conclusion.

➤ 81,6% correct predictions on all syllogisms.
➤ But no mechanism to explain the errors.
➤ The models always returns NVC for invalid syllogisms.

Zhai et al.’15



GOING BOTTOM-UP: ILLICIT CONVERSION

➤ Conversion: For every Q, 
`Q   A are B’ implies `Q   B are A’,

➤ This extension halves the number of misses.
➤ 91,9% correct predictions on all syllogisms.



UNCERTAINTY AND ERRORS

➤ Probability of guessing `nothing follows’ is negatively related to 
the informativeness of the premises

➤ Atmosphere hypothesis:
A. when there is a negation in the premises, subjects are 

likely to draw a negative conclusion 
B. when there is `some’ in the premises it will be likely in the 

conclusion
C. when neither is the case, the conclusion is often affirmative

49



PERFORMANCE OF THE FULL MODEL

➤ 95% correct predictions on all syllogisms
➤ The training gives the informativeness order as assumed by 

Chater & Oaksford: 
A> E > I > O 

➤ And data yields the complexity order: 
Conversion<Monotonicity<All-Some<No-SomeNot 

Zhai et al.’15



COMPARING WITH OTHER THEORIES

Khemlani and Johnson-Laird (2012)

Zhai et al.’15



SUMMARY

➤ Deriving `psychological completeness’ from data.
➤ Some rules are unlikely to fire. 
➤ A way to classify inferences steps wrt difficulty/preferability.
➤ Yields computationally friendlier systems. 
➤ Modular approach.



SOME FURTHER WORK
➤ Extend to wider fragments of language.
➤ Run experiments/train model on better data.
➤ Think about arising logics and proof systems.
➤ Think about processing model and its complexity.
➤ Pick natural reasoning rules (logic) from the data.
➤ Think about nonlinguistic tasks.
➤ …



TOPIC 1.1 WHAT WITH COMPLEX PATTERNS

Some of the sopranos sang with fewer than three of the tenors.
All sopranos were Italian.

Some of the sopranos sang with fewer than three of the Italians.



MONOTONICITY & DIFFICULTY

1. Some of the sopranos sang with more than three of the tenors. 
2. None of the sopranos sang with fewer than three of the tenors. 
3. Some of the sopranos sang with fewer than three of the tenors. 

Geurts & Slik’05

Question: Can you ground it in a Natural Logic? 



COMPLEXITY OF REASONING
➤ How complex are natural language arguments? 
➤ It depends on the underlying natural logic.
➤ Speakers tend to use “simple" messages.
➤ Semantic complexity correlates with linguistic frequency 

(Thorne, 2012)

Thorne’12



TOPIC 2: MEANING & COMPLEXITY

Semantics Psycholinguistics

theory data

57



FORMAL SEMANTICS
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How do we understand language?



FORMAL SEMANTICS

➤ Formal semantics builds precise models of meaning
➤ Success story in the last 50 years (language technology)
➤ E.g. explaining correctness (syntax not enough)
1. There are many semantics textbooks. 
2. There are most semantics textbooks. (*) 

Partee & ter Meulen’90, Kamp & Reyle’93, Portner’05, Winter’16, Dekker & Aloni‘16

58

How do we understand language?



PSYCHOLINGUISTICS
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How do we understand language?



PSYCHOLINGUISTICS

59

➤ Meaning is a relation between language and the world
➤ Meaning is a cognitive concept
➤ Cognitive science provides abundance of experiments

Clark’76, Moxey & Sanford’93, Pinker‘07, Berwick & Chomsky‘15

How do we understand language?



MOST OF THE DOTS ARE BLUE



MOST OF THE DOTS ARE BLUE

Hackl’09, Pietroski et al.’09, Geurts et al.’10, Lidz et al.’11, Szymanik et al.’15 



QUANTIFIERS

➤ Expressions that appear to be descriptions of quantity.
➤ All, not quite all, nearly all, an awful lot, a lot, a comfortable 

majority, most, many, more than n, less than n, quite a few, 
quite a lot, several, not a lot, not, many, only a few, few, a few, 
hardly any, one, two, three.

➤ The whole field of study Generalized Quantifier Theory

Peters & Westerståhl’08; Szymanik’16



SOME OF THE DOTS ARE BLUE



SOME OF THE DOTS ARE BLUE



MORE THAN 5 OF THE DOTS ARE BLUE



FEWER THAN 7 OF THE DOTS ARE BLUE



AN EVEN NUMBER OF THE DOTS ARE BLUE



LESS THAN HALF OF THE DOTS ARE BLUE



LOGIC & COMPLEXITY CLASSIFICATIONS

Barwise & Cooper, `81; van Benthem, ’86;  
Stanley & Westerståhl, ’06; Kontinen & Szymanik, ’14;  
Szymanik, `16



DRAW AUTOMATA
➤ Some dots are blue. 

➤ All dots are blue. 

➤ No dots are blue. 

➤ Some dots are not blue. 

➤ More than 3 dots are blue.  

➤ Fewer than 4 dots are blue.  

➤ An even number of dots are blue. 

➤ An odd number of dots are blue.  

➤ Most dots are blue.  

➤ Less than half dots are blue. 



CLASSIFYING MINIMAL COMPLEXITY

➤ Aristotelian quantifiers, e.g, all, some, no, some-not (2-state FA)
➤ Numerical quantifier, e.g, more than 5 (FA)
➤ Proportional quantifier, e.g., most (PDA)

van Benthem’86, Mostowski’98,  

Kanazawa’13; Steinert-Threlkeld & Icard’13, Szymanik’16



ARE LOGICAL DISTINCTIONS PLAUSIBLE? 

McMillan et al.’05, ’06, Szymanik’07

Differences in brain activity:
A. All quantifiers are associated with numerosity: recruit right inferior 

parietal cortex.
B. Only higher-order activate working-memory capacity: recruit right 

dorsolateral prefrontal cortex.



ARE LOGICAL DISTINCTIONS PLAUSIBLE? 

Szymanik & Zajenkowski’10, Zajenkowski et al.’11, 
Szymanik’16 

Behavioral differences:



Do such measures predict corpora distributions? Thorne & Szymanik’15

PRINCIPLE OF MINIMAL EFFORT



TOPIC 3: PROBLEM SOLVING

Mastermind: an inductive inquiry game,                                       
trials of experimentation and evaluation



TOPIC 3: PROBLEM SOLVING

Mastermind: an inductive inquiry game,                                       
trials of experimentation and evaluation

Great inductive game to play is Eleusis, see here for 
the rules, examples and a bit of references.

http://www.jakubszymanik.com/slides/ESSLLI_StuS170812.pdf


MASTERMIND: A CODE-BREAKING GAME
➤ The set consists of:

➤ a decoding board
➤ code pegs of k colors
➤  and feedback pegs of black and white

➤ Players:
➤ the code-maker: chooses a secret pattern of l code pegs
➤ the code-breaker: guesses the pattern, in a given n rounds

➤ Rounds:
➤ code-breaker makes a guess by placing a row of l code pegs
➤ code-maker provides the feedback:

➤ one black for each code peg of correct color and position, and
➤ one white for each peg of correct color but wrong position

➤ repeat until either the code-breaker guesses correctly, or n incorrect guesses 
➤ Winning:

➤ for the code-breaker: if obtains the solution within n rounds
➤ the code-maker wins otherwise



PREVIOUS RESEARCH

➤ Acquisition of ToM (Verbrugge & Mol `08)
➤ Efficient strategies (Knuth ’77, Kooi `05)
➤ Computational complexity (Stuckman and Zhang ’06) 

Mastermind Satisfiability Decision Problem:
Input: A set of guesses G and their corresponding feedbacks.
Question: Is there at least one valid solution?



MATHGARDEN.COM

http://mathgarden.com


DEDUCTIVE MASTERMIND: 
FLOWERCODE IN MATH GARDEN

➤ decoding board 
➤ short feedback instruction 
➤ domain of flowers to choose from
➤ timer in the form of disappearing coins 

Gierasimczuk et al.’13



SOME FACTS ABOUT FLOWERCODE

➤ Atomic logical steps of non-linguistic logical reasoning 

➤ running since November 2010 

➤ 321 game-items, 1-5 flowers, 2-5 colors 

➤ by December 2012, 4,895,648 items had been played 

➤ 37,339 primary school students (grades 1-6, age: 6-12 years) 

➤ in over 700 locations (schools and family homes)



SOME FACTS ABOUT FLOWERCODE

user 163545
played 3601 items

59 times this item

R
ea

ct
io

n 
T

im
e

Week number

Gierasimczuk et al.’13



DIFFICULTY LEVELS

➤ students play game-items suited for their level 
➤ the tasks’ difficulty and the students’ level are estimated 
➤ via the Elo (1978) rating system 
➤ ratings depend on accuracy and speed of item solving 
➤ By-products: 

1) rating of all items (item difficulty parameters) 
2) rating of children (reflecting the reasoning ability) 



NECESSITY OF PRIOR DIFFICULTY 
ASSESSMENT 

initial difficulty estimation in terms of non-logical aspects  
(# of flowers, colors, lines, the rate of the hypotheses elimination)

Gierasimczuk et al.’13

how to fix this to facilitate the training effect?



A LOGICAL ANALYSIS: CONJECTURES 

Each game-item consists of a sequence of conjectures: 

Gierasimczuk et al.’13



A LOGICAL ANALYSIS: FEEDBACK
➤ every non-goal conjecture is accompanied by a feedback 
➤ that indicates how similar h is to the given goal assignment 
➤ feedback colors g, o, r 

Gierasimczuk et al.’13



THE INFORMATIONAL CONTENT

a second-order formula that encodes any feedback 
gaobrc for any h wrt goal 

Gierasimczuk et al.’13



THE INFORMATIONAL CONTENT
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THE INFORMATIONAL CONTENT

Gierasimczuk et al.’13



EXAMPLE

Gierasimczuk et al.’13



GAME ITEM 

Gierasimczuk et al.’13



ANALYTIC TABLEAUX FOR DEDUCTIVE 
➤ analytic tableau is a decision procedure for propositional logic 
➤ it solves satisfiability of finite sets of formulas of propositional logic
➤ by giving an adequate valuation 
➤ building a formula-labeled tree rooted at the set 
➤ unfolding breaks them into smaller formulae 
➤ until contradiction is found or no further reduction is possible 



ANALYTIC TABLEAU AND DM

Applying the analytic tableaux method to the Boolean translation 
of a Deductive Mastermind game-item will give the unique 
missing assignment goal.



2-PLACED GAME-ITEMS

gg, go, oo, rr, gr, or 
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2-PLACED GAME-ITEMS

gg, go, oo, rr, gr, or 

oo < rr < gr < or 
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ANOTHER EXAMPLE
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ANOTHER EXAMPLE

Gierasimczuk et al.’13



HYPOTHESIS AND PRELIMINARY RESULTS

➤ tableau give ‘ideal’ reasoning scheme
➤ abstract complexity measure (tree size) 
➤ shape and size of the tree depends on what goes first (minimal) 
➤ reasoning optimization:

➤ items’ initial difficulty corresponds to the size of top-botom trees 
➤ items’ logical difficulty corresponds to the size of the minimal trees 
➤ the reasoning is optimized according to feedback complexity  



METHOD

➤ participants: 28,247 students from grades 1-6, of age: 6-12 years
➤ played: 2,187,354 items between Nov. 2010 and Jan. 2012 
➤ items: 321 DM items among them 100 two-places items



RESULTS
➤ all factors but one (gr) were significant in predicting item difficulties 
➤ two difficulty clusters:
➤ easy: 

no or feedback and no gr feedback 
no or feedback, at least one gr feedback, and all colors are 
included 

➤ difficult: otherwise

Gierasimczuk et al.’13



TOWARD THE ERROR ANALYSIS
➤ Frequencies of answers are consistent with the analysis.
➤ Most common erroneous responses are structurally the same 

within the items that have the same tableau representation

Gierasimczuk et al.’13



SUMMARY

➤ Non-linguistic task with proof-theoretic analysis 

➤ Complexity of the proof correlates with difficulty. 

➤ Errors seem to follow the `logical’ pattern.  

➤ Various complexity measures: 

➤ initial item difficulty ~ abstract size of the proof  

➤ logical item difficulty ~ size of the minimal proof 

➤ reasoning difficulty ~ optimized algorithm



LEARNING, TEACHING, & STRATEGIES



LEARNING, TEACHING, & STRATEGIES



TOPIC 4: SOCIAL COGNITION



HIGHER-ORDER REASONING

➤ ‘I believe that Ann knows that Ben thinks . . . ’
➤ Interacts with modal logic and game-theory
➤ Two major experimental paradigms:

➤ false belief tasks
➤ turn-based games



TOPIC 4.1: FALSE-BELIEF TASKS

Wimer & Perner’83 

Baron-Cohen et al.’85



SMARTIES TEST

1. Peter, is shown a Smarties tube

2. Smarties have been replaced by pencils

3. "What do you think is inside the tube?"

4. Peter answers: "Smarties!"

5. The tube is then shown to contain 
pencils only.

6. "Before it was opened, what did you 
think was inside?”

7.  ???



DEVELOPMENT OF TOM

Wellman et al.,’01

Autistic children have a delayed ability to answer correctly



CLOSED-WORLD REASONING ANALYSIS

Van Lambalgen & Stenning’08



SO, TWO COMPETING RULES

➤ (#) Prepotent response:
➤ (*) Partial comprehension:
➤ (#) inhibits (*):
➤ (*) inhibits (#):  



A HYBRID LOGICAL ANALYSIS
➤ Reasoning is about shifting to a different perspective:

➤ At the time a, Peter deduces that there are Smarties inside 
the tube

➤ If Peter deduces φ then Peter believes φ
➤ Hence, @a, Peter believes that there are Smarties inside.

Braüner’13



WHAT’S THE CONCLUSION?

➤ Different diagnoses
➤ Do they predict differences in processing?
➤ How one could experimentally compare the models?
➤ What about erroneous reasoning? 
➤ Do they shed any light on the developmental process?

There are other logical formalizations, e.g, Bolander 2014 uses DEL.



Aarslan et al.’13. 

TOPIC 4.2: 2ND ORDER FALSE BELIEF TASK



USING COGNITIVE ARCHITECTURES



USING COGNITIVE ARCHITECTURES



ACT-R:
ADAPTIVE CONTROL OF THOUGHT, RATIONAL



WHAT IS ACT-R?



WHY ACT-R?



APPLICATIONS



HOW DOES IT WORK?



• Symbolic: production system

• Sub-symbolic:

A. Utility functions for 
productions

B. Declarative memory retrieval

C. Learning

HYBRID ARCHITECTURE



EXAMPLE: ACTIVATION IN 
DECLARATIVE MEMORY



Aarslan et al.’13. 

2ND ORDER FALSE BELIEF TASK



Aarslan et al.’13. 



Aarslan et al.’13. 

RESULTS



TOPIC 4.3 TURN-BASED GAMES



HIT-N GAME

Gneezy et al.’10 

Hawes et al.’10



MATRIX GAMES

(a) (b) (c) (d) (e)
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Hedden & Zhang’02



MARBLE DROP GAME

Meijering et al.’10



LOGICAL EQUIVALENCE BUT DIFFERENT 
BEHAVIOR

(a) (b) (c) (d) (e)
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Meijering et al.’10



DO PEOPLE PLAY BACKWARD INDUCTION?

At the end of the game, players have their values marked. At the 
intermediate stages, once all follow-up stages are marked, the 
player to move gets her maximal value that she can reach, while 
the other, non-active player gets his value in that stage.



PERFORMANCE AT MDG



PERFORMANCE AT MDG



PERFORMANCE GETS BETTER



PERFORMANCE GETS BETTER



QUESTIONS

➤ What’s going on?
➤ What are the cognitively important structural properties?
➤ How to approximate cognitive complexity?



MARBLE DROP GAME



MARBLE DROP GAME



ALTERNATION TYPE ~ LEVELS OF REASONING



PAY-OFF STRUCTURES



PAY-OFF STRUCTURES

Forward reasoning + backtracking as an algorithmic model of the task



ACCESSIBLE VS. NON-ACCESSIBLE

Szymanik et al.’13,
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SIMULATING THE ALGORITHM



FINALLY, FRB FITS EYE-TRACKING DATA

Meijering et al.’12



FINALLY, FRB FITS EYE-TRACKING DATA

Meijering et al.’12



FRB PREDICTS RT

Szymanik et al.’13,



WHY FRB?

➤ FRB avoids higher-order reasoning
➤ Heuristics to avoid higher-order reasoning
➤ Normative question: Which are good?
➤ Descriptive question: Which are used?
➤ Strategic ability as a collection of algorithms.



IS THERE A TRANSFER BETWEEN FALSE 
BELIEF TASK AND GAMES?

Are the two task tapping into the same cognitive skills?



COURSE SUMMARY & DISCUSSION

➤ Logic helps to rigorously formulate cognitive problems
➤ Logic informs about intrinsic properties of a problem
➤ Often inspires cognitive models and experimental paradigms
➤ Which logic to choose? Only one logic of a task?
➤ What about learning/developmental perspective?
➤ How to go beyond normativity, accounting for errors?
➤ How to go from descriptive to processing perspective?



Take home message:

Logic informs about intrinsic 
properties of a problem


