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WARM-UP



BALL & BAT (KAHNEMAN & FRANK)

» A ball and a bat together cost $1.10.

» The bat costs $1 more than the ball.

» How much does the ball cost?



AN EXAMPLE FROM HECTOR LEVESQUE

Jack is looking at Anne, but Anne is looking at George. Jack is

married, but George is not. Is a married person looking at an
unmarried person?

(a) Yes
(b) No

(c) Not enough information to determine



LINGUISTIC REASONING

Some zookeepers are pacifists
No pacifists are troglodytes

Some zookeepers are not troglodytes



MORE RIDDLES HERE



https://www.youtube.com/watch?v=7Vd1dTBVbFg&list=PLJicmE8fK0EiFRt1Hm5a_7SJFaikIFW30

MORE RIDDLES HERE



https://www.youtube.com/watch?v=7Vd1dTBVbFg&list=PLJicmE8fK0EiFRt1Hm5a_7SJFaikIFW30

The sole end of logic is to explain the
principles and operations of our
reasoning faculty.

-David Hume



INTRODUCTION




LOGICAL MODELING

» Sometimes also called Declarative/Symbolic modeling.

» (Goal: To systematize (parts) of cognition on the concept of
logical system and the notion of reasoning and computing in
such systems.

» The oldest paradigm for modeling the mind (since Aristotle)

» (Good at: finding certain intrinsic (context-independent,
combinatorial) structures that predict and explain human
thinking.

» Top-down information processing systems, often closely link
with Al.



DIVIDE BETWEEN LOGIC AND PSYCHOLOGY

Kant: logical laws as the fabric of thoughts
19th century: logic=psychologism (Mill)

>
>

> Frege’s anti-psychologism enforced separation

» 19/20th century beginnings of modern logic and psychology
>

'60 withess the growth of cognitive science but also semantic
and computational turn in logics pivoting around the notion of
interpretation and processing.
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EXAMPLE: THE WASON SELECTION TASK

If there is a D on one side of the card, then there is a 3 on the other.

D F 3 7
Experimental Results 89% 16% 62% 25%

If a person is drinking beer, then the person must be over 18.

beer coke 22yrs 16yrs

Experimental Results  95%  0.025% 0.025% 80%

Reasoning to’ and from’the interpretation (van Lambalgen and
Stenning, 2008)



LEVELS OF INFORMATION PROCESSING

1. Computational level: specify cognitive task

2. Algorithmic level: the algorithms that may be used

3. Implementation level: how this is actually done in the brain

Marr’83



HOW LOGIC CONTRIBUTES?

» Helps to rigorously formulate problems’
> Logic informs about intrinsic properties of a problem
» Structural properties correlate with human performance

» Logic captures inherent cognitive complexity



EXPLORING RECENT CASE STUDIES

» (Categorization

» Syllogistic reasoning

» Processing meaning
Reasoning about others

>
> Strategic reasoning
» Problem solving

>



TOPIC 0: BOOLEAN CATEGORIZATION

= Varieties of Beer

Munich dunkel

Schwarzbier

Munich helles Doppelbock

Dortmunder
Eisenbock
Traditional bock
v Helles bock
S  LAMBIC& EUROPEAN LAGER
PORTER ENGLISH SOUR B

: BITTER 1e BELGIAN
ROWN A L
1'\L[ { _ : - ,\I()lll ager
PALI WHEAT
ALI BEES AMERICAN LAGER

PILSNER

Bohemian pilsner
American dark

American lite German pilsner

. . American pilsner
American Premium

American Standard




BOOLEAN RELATIONS

» Boolean relations are a way to create new concepts:
‘cousin’is a child of an uncle or aunt

‘beer’is an alcoholic beverage usually made from malted
cereal grain and flavored with hops, and brewed by slow
fermentation

in basketball, "travel’ is illegally moving the pivot foot or taking
three or more steps without dribbling

“depression’ is a mood disorder characterized by persistent
sadness and anxiety, or feeling of hopelessness and
pessimism, or ...



QUESTIONS

» How people acquire, represent, and use concepts?

» E.g., concepts depending on and are easier to learn than
those depending on or (Bruner et al. 65).

» But the data seems more puzzling (see next slide).

» What’s the logical theory of complexity here?
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SHEPARD TREND

Six different sorts of concept based on three binary variables
Each concept: 4 instances and 4 non-instances in 8 possibilities
Different presentations methods: sequentially, simultaneously, etc.

Dependent variables: errors, latencies, accuracy of descriptions,

Iet<C.II<III, IV, V < VI x /.
IVl 7y Vi Vi Va

(i) (ii) (i)

o

Vali vy Vs

Shepard etal.’61 (iv) (v) (vi)



THE INSTANCES OF THE CONCEPTS

Concept number Instances
not-abc
| not-a b not-c

not-a not-b ¢
not-a not-b not-c

abc

” a b not-c
not-a not-b ¢

not-a not-b not-c

a not-b c

”l not-a b not-c
not-a not-b ¢

not-a not-b not-c

a not-b not-c

|V not-a b not-c
not-a not-b ¢

not-a not-b not-c

abc

V not-a b not-c
not-a not-b ¢

not-a not-b not-c

a b not-c

Vl anot-bc
not-ab c

not-a not-b not-c




BOOLEAN COMPLEXITY

» The length of the shortest Boolean formula logically equivalent
to the concept, e.g., expressed in terms of the number of
literals (positive or negative variables).

» ~ Intrinsic mathematical complexity of the concept.
» ~ Kolmogorov complexity of 'incompressibility’.
» Btw, finding the shortest formula is intractable.

» (a and b) or (a and not b) or (not a and b) reduces to (a or b)



BOOLEAN COMPLEXITY AND DATASET

» Minimal description predicts learning difficulty (Feldman '01).
» But (aand b) <(aorb)

» So parity assumption: concepts with fewer instances than non-
iInstances should be easier to learn than those with fewer non-
Instance than instances.



CAPTURES SHEPARD TREND

Concept Instances Minimal
number description
not-ab c
| not-a b not-c not a (1)

not-a not-b ¢
not-a not-b not-c

abc
a b not-c
not-a not-b ¢
not-a not-b not-c

a not-b c
not-a b not-c
not-a not-b ¢

not-a not-b not-c

a not-b not-c

not-a b not-c

not-a not-b ¢
not-a not-b not-c

abc
not-a b not-c
not-a not-b c
not-a not-b not-c

a b not-c

a not-b c

not-ab c
not-a not-b not-c

(a and b) or (not a and not
b) (4)

(not a and not c) or (not b
and c) (4)

(not c or (not a and not b))
and (not a or not b) (5)

(not a and not (b and c)) or
(a and (b and c)) (6)

(aand ((notbandc) or (b
and not c))) or
(not a and ((not b and not

¢) or (b and c))) (10)




NEW DATA SET

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» Consider an arbitrary Boolean concept defined by P positive
examples over D binary features.

» For Shepard types D=3 and P=4.

» Feldman studies 76 Boolean concepts.

2 | 1 Tested families
D ‘ nn SHJ famil

3 1 64— y

2 K I N ) P

'
5 1 p Feldman ‘01
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RESULTS

> Boolean complexity accounts
for 50% of variance in the
dataset.

QUESTIONS

» Which Boolean connectives?

» Constructing minimal
descriptions is intractable.

» Parity itself explains 20% of
variance.

> S0, a recent flurry of alternative
models: Feldman 06, Vigo
'09, Goodwin et al. '13,...



BOOLEAN LANGUAGE COMPARISON

» Bayesian concept learning model (Goodman et al., 08).

» Bayesian data analysis model: which representational system
IS the most likely, given human responses?

Grammar H.O.LL FP R%espo,,se R2,..
FULLBOOLEAN —16296.84 27 .88 .60
BICONDITIONAL —16305.13 26 .88 .64
CNF —16332.39 26 .89 .69
DNF —16343.87 26 .89 .66

<_SIMPLEBOOLEAN >  —16426.91 25 87 70
IMPLIES —16441.29 26 87 .70
HORNCLAUSE —16481.90 27 87 .65
NAND —16815.60 24 .84 61
NOR —16859.75 24 85 58
UNIFORM —19121.65 4 7 .06
EXEMPLAR —23634.46 5 S5 A5
ONLYFEATURES —31670.71 19 54 14
RESPONSE-BIASED —37912.52 4 .03 .04

Piantadosi et al. '16



TOPIC 1: SYLLOGISTIC REASONING
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TOPIC 1: SYLLOGISTIC REASONING

Natural Logic
Probability

Machine Learning

explanation prediction
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CASE STUDY

1. All aardvarks are insectivores.

2. All Orycteropodidae are aardvarks.

3. 90%: All Orycteropodidae are insectivores.
4. 5%: Some Orycteropodidae are insectivores.
5. 5%: Others, including erroneous.

1 .5 .5
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PLAN OF ACTION

Psychology

. . Machine Data-driven

Reasoning Computation NEE et Learning Cognitive Models

Linguistics
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PLAN OF ACTION

Psychology
Reasoning . Computation .l Natural Logic ST Data-driven

Learning Cognitive Models

Linguistics
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PSYCHOLOGICAL THEORIES OF REASONING

Bayesian Rationality

Mental Models Mental Logic



MENTAL LOGIC

> Rips (1994):

» Formulas as the underlying mental representations
» Inference rules are the basic operations

» PSYCOP based on Natural Deduction

» You can think about proofs as computations



MENTAL LOGIC’S SHORTCOMINGS

» Abstract rules and formal representations

» Based in natural deduction for FOL

» Ad hoc psychological completness’

» Explains only validities, no story on mistakes

» No learning or individual differences



QUICK FIX: NATURAL LOGIC PROGRAM

using linguistic constructs directly as vehicles of inference
» van Benthem 1986, Sanchez-Valencia 1991:

» They are natural!

» All aardvarks are insectivores.

> Vr|Aardvark(z) =—> Insectivore(z)]

undecidable
Church 1936
Gradel, Otto, Rosen 1999

» All (Aardvarks, Insectivores)

in co-NEXPTIME

» They scale up!

Co-NEXPTIME
Gradel, Kolaitis, Vardi '97

lower bounds also open

S NLOGSPACE

Pratt-Hartmann’04 32



BENCHMARK TASK: SYLLOGISTICS

> All A are B : universal affirmative (A)

» Some A are B: particular affirmative (1)
» No A are B: universal negative (E)

» Some A are not B: particular negative (O)

Figure 1: Figure 2: Figure 3: Figure 4.

BC CB BC CB
AB AB BA BA
AC AC AC AC
EA2E:
No C are B
All A are B

No A are C



VALID REASONING

» An argument is valid if and only if it takes a form that makes it
impossible for the premises to be true and the conclusion
nevertheless to be false.

» True under every interpretation.

All men are mortal. Some men are famous.
Socrates 1s a man. Socrates 1s a man.

Therefore, Socrates is mortal. Therefore, Socrates is famous.



DATA - SYLLOGISTIC REASONING

premisses conclusion premisses conclusion premisses conclusion
&figure e A 1 E O &figue A I E O &figure A 1 E O
AAl 90 S 0 O AOl 1 6 1 57 I01 3 4 1 30
AA2 58 8 1 1 AO2 0 6 3 67 02 1 5 4 37
AA3 5729 0 0 AO3 0 10 0 66 I03 0 9 1 29
AA4 7516 1 1 A4 0 5 3 72 04 0 5 1 44
All 092 3 3 OAl 0 3 3 68 Ol1 4 6 0 35
AI2 0 57 3 11 OA2 0 11 5 56 O2 0 8 3 35
AlI3 18 1 3 OA3 0 15 3 69 913 1T 9 I H1
Al4 0 71 0 1 OAd 1 3 6 27 O4 3 8 2 29
IAl 0 72 0 6 11 0 41 3 4 EE1 0 1 34 1
IA2 1349 3 12 Iz 142 3 3 EE2 3 3 14 3
IA3 28BS 1 4 I3 024 3 1 EE3 0 O 18 3
IA 091 1 1 14 0 42 0 1 EEF4 0 3 31 1
AElI 0 3 59 6 IE1 1 1 2216 EOl 1 8 8 23
AE2 0 O 88 I IE2 0 0 39 30 FO2 O 13: 7 1l
AE3 0 1 61 13 IE3 O 1 30 33 EO3 0 0 9 28
AE4 0 3 87 2 IE4 0 1 28 44 EO4 O 5 8 12
EAl 0 1 87 3 EIl 0 5 1566 OEl 1 0 14 5
EA2 0 0 89 '3 EI2 1 1 2152 OE2 0 8 11 16
EA3 0 0 64 22 EI3 0 6 1548 OE3 O 5 12 18
EA4 1 3 61 8 El4 0 2 32 2% OE4 0 19 9 14
001 1 8 1 22
A=all E=no 002 0 16 5 10
[=some O =some ... not 003 1 6 0 15
004 1 4 125 Chater and Oaksford’99




GEURT’'S 2003 MODEL

» Logic including syllogistics and pivoting on monotonicity:
> All-Some: "All A are B’ implies Some A are B’.

» No-Some not: No A are B’ implies Some A are not B’.
» Conversion1: Some A are B’ implies Some B are A’;

» Conversion2: No A are B’ implies No B are A".

» Monotonicity: If A entails B, then the A in any upward entailing
position can be substituted by a B, and the B in any downward
entailing position can be substituted by an A.

» Extra rule: No Aare B’and Some C are A’ implies Some C are
not B'.



MONOTONICITY EXPLAINED

» Some boy is dirty so Some child is dirty. (upward)
» All children are dirty so All boys are dirty. (downward)

» Some not? No?



EXAMPLE OF A SYLLOGISTIC PROOF

No C are B (1)

AllAare B (2)

No B are C (3) Conversion (1)
No Aare C (4) Monoftonicity (2,3)

38



INHERENT COMPLEXITY

» The shorter the proof the easier the syllogism.

» Initial budget of 100 units. Each use of the monotonicity rule
costs 20, the extra rule costs 30; a proof containing a "Some
Not" proposition costs an additional 10 units. Take the
remaining budget as an evaluation of the difficulty.

> |t gives a good fit with data.

AAIA 80  (90) OA30 70 (69) EAIO 40 (3)

EAI1E 80  (87) AO20 70  (67) EA20 40 (3)

EA2E 80  (89) EI1O0 60  (66) EA30 40 (22)

AE2E 80  (88) EI20 60 (52) EA40 40 (8)

AE4E 80  (87) EI30 60  (48) AE20 40 (1)

[A3] 80  (85) El40 60  (27) AE40 40 (2)

[A4] 80  (91) AAII 60 (5)

Alll 80  (92) AA3I 60 (29 : e

AT 30 (89) AAd] &0  (16) Predicted difficulty and data

Geurts’03



SHORT-COMINGS OF GEURTS’ APPROACH

> Arbitrary set of rules
» Arbitrary weights

» But we can learn these from the data



PROBABILISTIC INFERENCE

No A are B; Some B are not C

\

Conversion(1)

NO—Samenot(l) \

No A are B; Some B are not C; No B are A

Y
No A are B; Some B are not C; Some A arenot C{, ...

» Geurts’ logic
> Tree representation: states linked by reasoning events
» No vapid transitions

41



PROBABILITIES

» Tendency value, w;: an easier ‘rule is adopted with higher
probability, while a more difficult one is adopted with lower
probability.

Wy

Wa + Z?"/ER Crr * Wy

p(T|S,W) —

> W IS a weight estimated (for every rule r) from the data
» cr the number of ways that rule r can be adopted at S

> Wg reserves probability mass for terminating' the inference at
state S and making a heuristic guess



EXAMPLE: OET1

i

No A are B; Some B are not C

\

Conversion(1)

NO—Som,enot(l) \

No A are B; Some B are not C; No B are A

Y
No A are B; Some B are not C; Some A arenot C|, ...




THE OUTPUT OF THE MODEL

» A probability with which a syllogism is endorsed.
» 5 possible conclusions: A, |, E, O, NVC.

» We model transition probabilities.

» We compute the probability that a given conclusion is drawn.



THE OUTPUT OF THE MODEL

» A probability with which a syllogism is endorsed.
» 5 possible conclusions: A, |, E, O, NVC.

» We model transition probabilities.

» We compute the probability that a given conclusion is drawn.

wl w2

w3 w4 w5




TRAINING

» Subset of the data from Chater and Oaksford (1999).

» We use the generalized expectation maximization: there is no
closed-form solution for the M step.

» Compute:

Arg max p({(Xi, ¥i) }i<nl|0)



EVALUATION

» The Khemlani and Johnson-Laird (2012) method.
» Detection theory.

» They assume there is a lot of random noise in the data.

Predictions \ Exp. Data < 30% > 30%
< 30% Correct Rejection  Miss
> 30% False Alarm Hit




PERFORMANCE

» 95,8% correct predictions on syllogisms
with at least one conclusion.

» 81,6% correct predictions on all syllogisms.

» But no mechanism to explain the errors.

» The models always returns NVC for invalid syllogisms.

Zhaietal.’15



GOING BOTTOM-UP: ILLICIT CONVERSION

» Conversion: For every Q,
'Q Aare B’ implies Q BareA,
» This extension halves the number of misses.

> 91,9% correct predictions on all syllogisms.



UNCERTAINTY AND ERRORS

» Probability of guessing nothing follows’ is negatively related to
the informativeness of the premises

» Atmosphere hypothesis:

A. when there is a negation in the premises, subjects are
likely to draw a negative conclusion

B. when there is some’ in the premises it will be likely in the
conclusion

C. when neither is the case, the conclusion is often affirmative

49



PERFORMANCE OF THE FULL MODEL

» 95% correct predictions on all syllogisms

» The training gives the informativeness order as assumed by
Chater & Oaksford:

A>E>I>0
» And data yields the complexity order:

Conversion<Monotonicity<All-Some<No-SomeNot

Zhaietal.’15



COMPARING WITH OTHER THEORIES

Khemlani and Johnson-Laird (2012)

Theory Hit Miss False Alarm Correct Rejection Correct Predictions
Atmosphere 44 41 20 215 259 /80.9%
Matching 41 44 55 180 221 /69.1%
Conversion D2 33 12 223 275 /85.9%
PHM* 40 45 63 172 212 /66.3%
PSYCOP 45 40 26 209 254 /79.4%
Verbal Models* 4 31 29 206 260 /81.2%
al Models™ 85 0 55 180 265 RY
enerative Model Ver. 1 | 51 33 26 210 261/81.6%
Generative Model Ver. 2 | 67 17 9 227 294/91.9%
Generative Model Ver. 3 | 74 10 6 230 304/95.0%

imental Data 85 0 0 235 320 /1005

— ———

Zhaietal.’15



SUMMARY

» Deriving psychological completeness’ from data.

» Some rules are unlikely to fire.

» A way to classify inferences steps wrt difficulty/pretferability.
> Yields computationally friendlier systems.

» Modular approach.



SOME FURTHER WORK

» Extend to wider fragments of language.

» Run experiments/train model on better data.

» Think about arising logics and proof systems.

» Think about processing model and its complexity.
» Pick natural reasoning rules (logic) from the data.

» Think about nonlinguistic tasks.

> ..



TOPIC 1.1 WHAT WITH COMPLEX PATTERNS

Some of the sopranos sang with fewer than three of the tenors.

All sopranos were ltalian.

Some of the sopranos sang with fewer than three of the ltalians.



MONOTONICITY & DIFFICULTY

1. Some of the sopranos sang with more than three of the tenors.
2. None of the sopranos sang with fewer than three of the tenors.

3. Some of the sopranos sang with fewer than three of the tenors.

Q1A sang with Q2B
All B were C./All C were B.
Q1A sang with Q>C

Q1 | Qo
TQI1TQa< 1 Q1 1Q Q1 L Qo
L QL Q TQ T Q<] Q1 Q< 1 Qs+ Qs

Geurts & Slik’05

Question: Can you ground it in a Natural Logic?



COMPLEXITY OF REASONING

» How complex are natural language arguments?

> |t depends on the underlying natural logic.

» Speakers tend to use “simple” messages.

» Semantic complexity correlates with linguistic frequency

(Thorne, 2012)

Distribution of FO fragments (Boxer)

log-log best fit (Boxer)

Thorne’12



TOPIC 2: MEANING & COMPLEXITY

Psycholinguistics

theory data

57



FORMAL SEMANTICS

How do we understand language?
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FORMAL SEMANTICS

How do we understand language?

» Formal semantics builds precise models of meaning

» Success story in the last 50 years (language technology)
» E.g. explaining correctness (syntax not enough)

1. There are many semantics textbooks.

2. There are most semantics textbooks. (*)
Partee & ter Meulen’90, Kamp & Reyle’93, Portner’05, Winter’16, Dekker & Aloni‘16

58



PSYCHOLINGUISTICS

How do we understand language?
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PSYCHOLINGUISTICS

How do we understand language?

» Meaning is a relation between language and the world
» Meaning is a cognitive concept

» (Cognitive science provides abundance of experiments

Clark’76, Moxey & Sanford’93, Pinker‘07, Berwick & Chomsky‘15

59



MOST OF THE DOTS ARE BLUE



MOST OF THE DOTS ARE BLUE

Hackl’09, Pietroski et al.’09, Geurts et al.’10, Lidz et al.’11, Szymanik et al.’15



QUANTIFIERS

» Expressions that appear to be descriptions of quantity.

» All, not quite all, nearly all, an awful lot, a lot, a comfortable
majority, most, many, more than n, less than n, quite a few,
quite a lot, several, not a lot, not, many, only a few, few, a few,
hardly any, one, two, three.

» The whole field of study Generalized Quantifier Theory

Peters & Westerstahl’08; Szymanik’16



SOME OF THE DOTS ARE BLUE
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MORE THAN 5 OF THE DOTS ARE BLUE




FEWER THAN 7 OF THE DOTS ARE BLUE




AN EVEN NUMBER OF THE DOTS ARE BLUE




LESS THAN HALF OF THE DOTS ARE BLUE




LOGIC & COMPLEXITY CLASSIFICATIONS

Barwise & Cooper, '81; van Benthem, *86;
Stanley & Westerstahl, '06; Kontinen & Szymanik, *14;
Szymanik, 16

All As are B.

>

More than 2 As are B.

aaB aaB aaB
— > > >

Most As are B.

finite top

&

control a
i state ;

. e (I .- .

input tape

stack



DRAW AUTOMATA

» Some dots are blue.

» All dots are blue.

» No dots are blue.

» Some dots are not blue.

» More than 3 dots are blue.

» Fewer than 4 dots are blue.

> An even number of dots are blue.
» An odd number of dots are blue.

» Most dots are blue.

» Less than half dots are blue.




CLASSIFYING MINIMAL COMPLEXITY

» Aristotelian quantifiers, e.g, all, some, no, some-not (2-state FA)
» Numerical quantifier, e.g, more than 5 (FA)

» Proportional quantifier, e.g., most (PDA)

van Benthem’86, Mostowski’98,

Kanazawa’13; Steinert-Threlkeld & Icard’13, Szymanik’16



ARE LOGICAL DISTINCTIONS PLAUSIBLE?

Differences in brain activity:

A. All quantifiers are associated with numerosity: recruit right inferior
parietal cortex.

B. Only higher-order activate working-memory capacity: recruit right
dorsolateral prefrontal cortex.

McMillan et al.’05, ’06, Szymanik’07



ARE LOGICAL DISTINCTIONS PLAUSIBLE?

Behavioral differences:

12000
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M Control H Control

4000 -

2000 -

Aristotelian Numerical Parity Proportional Aristotelian Numerical Parity Proportional

Szymanik & Zajenkowski’10, Zajenkowski et al.’11,
Szymanik’16



PRINCIPLE OF MINIMAL EFFORT
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Do such measures predict corpora distributions? Thorne & Szymanik’15



TOPIC 3: PROBLEM SOLVING

Mastermind: an inductive inquiry game,
trials of experimentation and evaluation




TOPIC 3: PROBLEM SOLVING

Mastermind: an inductive inquiry game,
trials of experimentation and evaluation

Great inductive game to play is Eleusts, see here for
the rules, examples and a bit of references.



http://www.jakubszymanik.com/slides/ESSLLI_StuS170812.pdf

MASTERMIND: A CODE-BREAKING GAME

» The set consists of:
» a decoding board
» code pegs of k colors
» and feedback pegs of black and white
» Players:
» the code-maker: chooses a secret pattern of / code pegs
> the code-breaker: guesses the pattern, in a given n rounds
» Rounds:
» code-breaker makes a guess by placing a row of / code pegs
» code-maker provides the feedback:
» one black for each code peg of correct color and position, and
> one white for each peg of correct color but wrong position
> repeat until either the code-breaker guesses correctly, or nincorrect guesses
» Winning:
» for the code-breaker: if obtains the solution within n rounds
> the code-maker wins otherwise



PREVIOUS RESEARCH

» Acquisition of ToM (Verbrugge & Mol 08)
> Efficient strategies (Knuth 77, Kooi 05)

» Computational complexity (Stuckman and Zhang ’06)

Mastermind Satisfiability Decision Problem:

Input: A set of guesses G and their corresponding feedbacks.

Question: Is there at least one valid solution?



MATHGARDEN.COM

Investigators |

instruction
methods

new items

data '

tasks
game playing report
Student > Math Garden.com > Teacher

instruction



http://mathgarden.com

DEDUCTIVE MASTERMIND:

-

O rrrrrrrrrye win | Gierasimczuk et al.”13

» decoding board

» short feedback instruction

» domain of flowers to choose from

» timer in the form of disappearing coins



SOME FACTS ABOUT FLOWERCODE

» Atomic logical steps of non-linguistic logical reasoning

» running since November 2010

» 321 game-items, 1-5 flowers, 2-5 colors

» by December 2012, 4,895,648 items had been played

» 37,339 primary school students (grades 1-6, age: 6-12 years)

» in over 700 locations (schools and family homes)



SOME FACTS ABOUT FLOWERCODE

user 163545
played 3601 items

59 times this item

Q - HYY

GE) RYRY /’U \ RYRY IR

= f A Fﬂ Y r"/ YI.\

|— ." I.I R\Fff\ Y v \ %Y

C o [\ Y R %B' QY v ’YRHW* \

O - ! Ii‘ |,'| R YR\I Y F\Yf’ﬁ(\\}{

— Y, [ [ RYg

% 0 V 9\9’:}-? I'l ,I'I

i %

X o
L L L 0 L BB
41 43 43 43 43 43 43 43 43 43 44 44 45 45 45 45 45 47 48 48

Week number

Gierasimczuk et al.’13



DIFFICULTY LEVELS

» students play game-items suited for their level

» the tasks’ difficulty and the students’ level are estimated
» via the Elo (1978) rating system

» ratings depend on accuracy and speed of item solving

» By-products:
1) rating of all items (item difficulty parameters)
2) rating of children (reflecting the reasoning ability)



NECESSITY OF PRIOR DIFFICULTY
ASSESSMENT

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

initial difficulty estimation in terms of non-logical aspects
(# of flowers, colors, lines, the rate of the hypotheses elimination)

« player rating distribution <+ item rating distribution
S 7 items played > 30 S T]2pinkems i
items played > 200
A
S
3
S 2 _
S
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S Gierasimczuk et al.’13
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o
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rating rating

how to fix this to facilitate the training effect?



A LOGICAL ANALYSIS: CONJECTURES
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Each game-item consists of a sequence of conjectures:

Definition

A conjecture of length / over k colors is any sequence given by a total
assignment, h: {1,...,¢} — {c1,...,Ck}. The goal sequenceis a
distinguished conjecture, goal : {1,...,¢} — {c1,...,Ck}.

Gierasimczuk et al.’13



A LOGICAL ANALYSIS: FEEDBACK
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» every non-goal conjecture is accompanied by a feedback
» that indicates how similar h is to the given goal assignment

» feedback colors g, o, r

Definition
Let h be a conjecture and let goal be the goal sequence, both of length / over
k colors. The feedback f for h with respect to goal is a sequence

a b c

N e N N a b.c
g...go...or...r=gor,

where a,b,c€ Nanda+ b+ ¢ = ¥4.

The feedback consists of:
» exactly one g foreachi € G, where G= {i € {1,...4} | h(i) = goal(i)}.

» exactlyone oforeveryie O,where O={iec {1,...,£}\G | Jj €
{1,...,£}\ G, such that i # jand h(i) = goal(j)}.

» exactly one rforevery i € {1,...,2}\(GU O). Gierasimczuk et al.’13



THE INFORMATIONAL CONTENT

a second-order formula that encodes any feedback

gaoPre for any h wrt goal

4G C {1,... 4} (card(G)=a A VieG h(i)=goal(i) \Vi¢ G h(i)#goal(i)
A0 CH{1,...2}\G (card(O)=b A VicO Jje{1,...L}\G(j#I N h(i)=goal(j))
AVie{l,...L}\(GUO) Vje{1,...£}\G h(i)#goal()))).

Gierasimczuk et al.’13



THE INFORMATIONAL CONTENT
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a general method of providing a propositional formula for any (h, f)

» literals: h(/) = goal(j), where i,j € {1,...£4} (or p;j, fori,j € {1,...4})
> V& P& 0s Pa,0 correspond to different parts of feedback:

..... ey—g hU)#goal(j)
0}y —G,i# h(i) = goal(j))

.....

> 96,0 = Nieqt,...e5\(GuO)je{1,...e3\G,i» 1) # goal())

as many substitutions of the above as choices of sets G and O

Gierasimczuk et al.”’13



THE INFORMATIONAL CONTENT

» setG:={G|GC {1,...,4} A card(G)=a}, and,
» ifGC {1,...,£},then 0% = {O|O C {1,...,£}\G A card(O)=b}

Definition
Finally, we can set Bi(h, f), the Boolean translation of (h, f) to be given by:

Bt(h,f):== \/ (6% A\ (9&0 A @50))

GeG 0Oe0G

Gierasimczuk et al.’13



EXAMPLE

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Let us take £ = 2 and (h, f) such that: h(1):=c1, h(2):=c,; f:=or. Then
G={0}, 0?*={{1},{2}}. The corresponding formula, Bt(h, f), is:
(goal(1)#c1 A goal(2)#cz) A ((goal(1)=c2 A goal(2)#c1) V (goal(2)=ci A goal(1)#c2))

Gierasimczuk et al.”’13



GAME ITEM
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Definition
A Deductive Mastermind game-item over £ positions, k colors and n lines,

DM(I, k,n), is a set {(h1,f1),...,(hn, fa)} of pairs, each consisting of a single
conjecture together with its corresponding feedback. Respectively,

Bt(DM(I, k,n)) = Bt({(h1,f),...,(An,fa)}) = {Bt(h,f),...,Bt(ha, )}

» hence, each DM game-item is a set of Boolean formulae
» moreover, by the construction this set is satisfiable
» and, even more, there is a unique valuation

Gierasimczuk et al.”’13



ANALYTIC TABLEAUX FOR DEDUCTIVE

analytic tableau is a decision procedure for propositional logic

it solves satisfiability of finite sets of formulas of propositional logic
by giving an adequate valuation

building a formula-labeled tree rooted at the set

unfolding breaks them into smaller formulae

until contradiction is found or no further reduction is possible

p NP e VY

: /YN

5 Y P (0




ANALYTIC TABLEAU AND DM

Applying the analytic tableaux method to the Boolean translation
of a Deductive Mastermind game-item will give the unique
missing assignment goal.



2-PLACED GAME-ITEMS

gg, go, oo, 11, gr, or



2-PLACED GAME-ITEMS



2-PLACED GAME-ITEMS

Ci, C/ Ci, Cj
00
rr
goal(1)#c;
goal(2)#c;
goal(1)=c; goal(1)#c; goal(2)#c;

goal(2)= c, goal(1)#c; goal(2)#c;



2-PLACED GAME-ITEMS

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Ci, Gj Ci, G
00
rr

goal(1)#c;
goal(2)#c;
goal(1)=c; goal(1)#c; goal(2)#c;
goal(2)= c, goal(1)#c; goal(2)#c;

Ci, Cj

/7\

goal(1)=c; goal(2)=c;
goal(2)#c; goal(1)+#c;



2-PLACED GAME-ITEMS

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

C”Cj CIvcj
00
rr
goal(1)#c;
goal(2)#c;
goal(1)=c; goal(1)#c; goal(2)#c;
goal(2)= c, goal(1)#c; goal(2)#c;
Ciacj Ci,Cj
/\
gr
goal(1)#c;  goal(2)#c;
goal(2)=c; goal(1)=c;
goal(1)=c; goal(2)=c; goal(1)#c; goal(2)7éc,

goal(2)#c; goal(1)#c; goal(2)#c; goal(2)#c;



2-PLACED GAME-ITEMS

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

C”Cj CIvcj
00
rr
goal(1)#c;
goal(2)#c;
goal(1)=c; goal(1)#c; goal(2)#c;
goal(2)= c, goal(1)#c; goal(2)#c;
Ci, Gj Ci,Cj
-\
gr
goal(1)#c;  goal(2)#c;
goal(2)=c; goal(1)=c;
goal(1)=c; goal(2)=c; goal(1)#c; goal(2)7éc,
goal(2)#c; goal(1)#c; goal(2)#c; goal(2)#c;

oo <Ir<gr<or



EXAMPLE

Gierasimczuk et al.’13



EXAMPLE
Bt(hi, fi)
Bt(he, )
aa
goal(1)=cy goal(2)=c;
goal(2)#cy goal(1)#c;
Bt(he, ) Bt(he, )
goal(1)=c, goal(1)=c;
goal(2)=cy goal(2)=c;

Gierasimczuk et al.’13



EXAMPLE

Bt(ho, )
Bt(hy, f;)

0]0,

goal(1)=c
goal(2)=c;
Bt(hy, f;)

Gierasimczuk et al.’13



Gierasimczuk et al.’13



Gierasimczuk et al.’13
Bt(h, f,)

goal(1)=c> goal(2)=c; goal(1)=c. goal(2)=c;
goal(2)#c, goal(1)#c. goal(2)#ci goal(1)#cs
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HYPOTHESIS AND PRELIMINARY RESULTS

tableau give ‘ideal’ reasoning scheme

abstract complexity measure (tree size)

shape and size of the tree depends on what goes first (minimal)
reasoning optimization:

> items’ initial difficulty corresponds to the size of top-botom trees

» items’ logical difficulty corresponds to the size of the minimal trees

> the reasoning is optimized according to feedback complexity



METHOD

> participants: 28,247 students from grades 1-6, of age: 6-12 years
» played: 2,187,354 items between Nov. 2010 and Jan. 2012

» items: 321 DM items among them 100 two-places items



RESULTS

> all factors but one (gr) were significant in predicting item difficulties
» two difficulty clusters:

> easy:
no or feedback and no gr feedback
no or feedback, at least one gr feedback, and all colors are
included

© - A #colors=2
+ #colors= 3
X #colors= 4

> difficult: otherwise o |5 Hemrae s

o — o A
S AA
+ ) & +
i A
X O
MY M+ XX g0 S + b -+
A++++ X > O + s
+, F & +
g TF MK F o+
+
= A A
<1 ¥
1. ¥
Gierasi ketal.’13
lerastmczur et al. I l T l T T T
0 50 100 150 200 250 300



TOWARD THE ERROR ANALYSIS

> Frequencies of answers are consistent with the analysis.

» Most common erroneous responses are structurally the same
within the items that have the same tableau representation

Proportion

00 02 04 06 08 10

Fig. 10 The figure displays the frequencies of various answers to four similar DMM-items. All items have
the same logical structure (the same reasoning trees) and display very similar error patterns, see items 73, 86,
and 92. In terms of structure, item 80 (fop-right corner) is a mirror image of the remaining ones. Although
similar, it clearly displays a different error pattern. This can be explained via the respective tableaux. The
tableau for item 80 requires more steps and thus a higher memory load
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Gierasimczuk et al.”’13



SUMMARY

» Non-linguistic task with proof-theoretic analysis

» Complexity of the proof correlates with difficulty.

» Errors seem to follow the "logical’ pattern.

» Various complexity measures:
> initial item difficulty ~ abstract size of the proof
» logical item difficulty ~ size of the minimal proof

» reasoning difficulty ~ optimized algorithm



LEARNING, TEACHING, & STRATEGIES
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LEARNING, TEACHING, & STRATEGIES
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TOPIC 4: SOCIAL COGNITION




HIGHER-ORDER REASONING

> ‘| believe that Ann knows that Ben thinks . . .~
» |nteracts with modal logic and game-theory
» Two major experimental paradigms:

> false belief tasks

» turn-based games



TOPIC 4.1: FALSE-BELIEF TASKS

This is Sally.

Sally has a marble. She puts the marble into her basket.

C]
b

e ((

Sally goes out for a walk.

Anne takes the marble out of the basket and puts it into the box.

Now Sally comes back. She wants to play with her marble.

Wimer & Perner’83
Where iII Sally look for her marble?

Baron-Cohen et al.’85
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SMARTIES TEST

Peter, is shown a Smarties tube
Smarties have been replaced by pencils
"What do you think is inside the tube?"
Peter answers: "Smarties!"

The tube is then shown to contain
pencils only.

"Before it was opened, what did you
think was inside?”

7?7



DEVELOPMENT OF TOM

Wellman et al.,’01

1021107) uongxodor g

40 50 60 70 80 90 100 110

30

Autistic children have a delayed ability to answer correctly



CLOSED-WORLD REASONING ANALYSIS

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

sees(p) = Ba(p)

Principle of inertia and closed world reasoning.
Prepotent response: By(p) A mab — Rp(p)
In some children it can be inhibited in others not.

Van Lambalgen & Stenning’08



SO, TWO COMPETING RULES

#) Prepotent response: By(i(i,t)) A —aby — Rp(1(i,1))

*) Partial comprehension: By(Bg(1(i,t))) A —aby, — Ry(B,(1(i,1)))
#) inhibits (*): Ryp(lL(4,t)) — aby

) inhibits (#): Bp(Bgy(l(2,t))) — aby,



A HYBRID LOGICAL ANALYSIS

» Reasoning is about shifting to a different perspective:

> At the time a, Peter deduces that there are Smarties inside
the tube

> |If Peter deduces ¢ then Peter believes ¢

» Hence, @a, Peter believes that there are Smarties inside.

al [@,Ds] (@F)
Ds Ds — Bs
(— E)
E] Bs (o)
©,Ds ©,Bs
(Term)

©,Bs
Bratiner’13



WHAT’S THE CONCLUSION?

» Different diagnoses

» Do they predict differences in processing?

» How one could experimentally compare the models?
» What about erroneous reasoning?

» Do they shed any light on the developmental process?

There are other logical formalizations, e.g, Bolander 2014 uses DEL.



TOPIC 4.2: 2ND ORDER FALSE BELIEF TASK

\

S

Reality control question: Where is the chocolate now? Zero-order (TV stand)

1st order false belief: Where will Murat look for the chocolate? First-order (Toy box)

2nd order false belief: Where does Ayla think that Murat will look for the chocolate?
Second-order ( Drawer)

Aarslan et al.’13.



USING COGNITIVE ARCHITECTURES




USING COGNITIVE ARCHITECTURES




ACT-R:
ADAPTIVE CONTROL OF THOUGHT, RATIONAL

How Can the Human
Mind Occur in

the Physical Universe?

John R. Anderson




WHAT IS ACT-R?

Subset of psycholgy experiments

General assumptions
about human cognition

#

ACT-R Assumptions about a
particular domain

A

ACT-R Model




WHY ACT-R?

Experiment--

‘ Predictions
Human subjects ACT-R model
Quantitative Quantitative
measures measures
Latency
™= Accuracy [
FMRI data




APPLICATIONS

Education
. Cognitive tutars
Cognitive Psychology Computer—generated forces
Perception and
o attention
earning Problem salving Cogniti
and memary and decision making v fortr(;gi:i:lgvee:\?i?:fmonts

Language and |ndividual differen
communaton

Cognitive deveb%?‘n%trﬁn

ACT-R Applications

User Modek

Predictions of BOLD respanse

Interface evaluation Interpretation of neurnimaging da

Human-computer interaction
Neuroscience



HOW DOES IT WORK?

Visual . Motor
Module [*® Environment————® \jodule
S ACT-R Buffers =—
Procedural l T_ Declarati
Memory — rﬁgfct%rl?‘q Memory
Production
execution




HYBRID ARCHITECTURE

-+ Symbolic: production system .
Subsymbolic, parallel

- Sub-symbolic: processes

A. Utility functions for
productions

B. Declarative memory retrieval Symbolic processes
(pattern matching)

C. Learning



EXAMPLE: ACTIVATION IN
DECLARATIVE MEMORY

A=B+¢
Bl.: The base-level activation. This reflects the recency and frequency of practice of the
chunk 7.

& The noise value. The noise 1s composed of two components: a permanent noise
associated with each chunk and an instantaneous noise computed at the time of a retrieval
request.

n: The number of presentations for chunk i.
t;: The time since the jth presentation.

d: The decay parameter which 1s set using the :bll (base-level learning) parameter. This
parameter 1s almost always set to 0.5.



2ND ORDER FALSE BELIEF TASK

(s
~—
=
‘0
2

\ Y,

e

Reality control question: Where is the chocolate now? Zero-order (TV stand)

1st order false belief: Where will Murat look for the chocolate? First-order (Toy box)

2nd order false belief: Where does Ayla think that Murat will look for the chocolate?
Second-order ( Drawer)

Aarslan et al.’13.



Where does Ayla think that Murat will look for the chocolate?

——

Retrieve a story fact that has an
sl sX5 i tac
action verb in its slots.

l - Reality bias

s5 Check the time slot of the retrieved story fact and if
it is not the latest fact, request the latest one.

(reasoning level 0) Request a retrieval of one of the reasoning levels from
(reasening level 2) declarative memory.

d If the k™-order reasoning is retrieved, determine whose knowledge the
question is about and give an answer accordingly.

|
C%E(F){IE' ng Based on the feedback, the model will strengthen successful strategy chunks, or will add

or strengthen an alternative strategy if the current one failed.

reasoning level 1
((reasoniﬁg?evel %)

(s1 murat put chocolate drawer time 1 type action self-reference s1)

(s2 ayla put chocolate toybox time 2 type action self-reference s2)

(s3 murat see time 2 perception self-reference s3 reference s2)

(s4 ayla did not see time 2 type perception self-reference s4 reference s3)
(sS mother put chocolate tvstand time 3 type action self-reference s5)

Declarative
Memory

(reasoning level 0) (reasoning level 1) (reasoning level 2)

Aarslan et al.’13.



RESULTS

To average the results across 100 children, we made 100
simulations. Thus, we ran the model 10,000 times in total.

o o — —
W o T
© o o
S ] )
, )
© /‘ > 100%
c © | Reasoning Level e ” /
S © , py
£ — 0 t
o \ — 1 ~ | 50%
— < — v 4
(s o 7 2 J
~60%
g 4 1 Wellman et al. (2001)
AN 7
o /. 2 Arslanetal. (2012)
o / I
o Al
o | | | | | 2 4 6 8 10
3 4 6 8 11 Age (years)
Zelro- | Time(years)
order | second-order
100%
first-order second-order
60% 60%

Aarslan et al.’13.



TOPIC 4.3 TURN-BASED GAMES




HIT-N GAME

) o ]
S R O R

Your score Opponent's score
0 0

Gneezy et al.’10

Hawes et al.’10



MATRIX GAMES

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

A D| |A D| [A D| |A D| |A D

3 4| 2 1 2 1| 1 3 4 1| 3 2 2 1|1 1 2 2 1| 3 4

@i——?@layer 1] [Player| )++(Player 1] [(Player |)++(Player 1] [Player )i——?(Player 1] [Player )%%@

4 2| 13[[42]34[/23|14/|43|34/[43]|1°2

Bl Eayern) |C| |B| @Eayermn) |C| |B| @Eayermn) [C| [B| @Eayern) |C| |B| @Eayern) |C
(a) (b) (c) (d) (e)

Hedden & Zhang’02



MARBLE DROP GAME
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(c)

Meijering et al.’10



LOGICAL EQUIVALENCE BUT DIFFERENT
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A D| [A D| [A D| [A D| [A D
3 4| 2 1 2 1|1 13 4 1| 3 2 2 1|1 1 2 2 1| 3 4

Player | ii——?(Player ] [Player | ]i——F(Player ] [Player | )i——?(PIayer ] [Player | )i——T—(Player ] [Player | )i——?{ Player |

1 3 4 2| 3 4 2 3| 1 4 4 3| 3 4 4 3| 1 2
- —r> > —b> >

2
Bl mem |C| [B] @mem [C| [B] @mem [C| Bl Fmem [C| [B] Fmem [C
(a) (b) (©) (d) (e)

Meijering et al.’10




DO PEOPLE PLAY BACKWARD INDUCTION?

At the end of the game, players have their values marked. At the
intermediate stages, once all follow-up stages are marked, the
player to move gets her maximal value that she can reach, while
the other, non-active player gets his value in that stage.



PERFORMANCE AT MDG




PERFORMANCE AT MDG




PERFORMANCE GETS BETTER




PERFORMANCE GETS BETTER




QUESTIONS

» What’s going on?
» What are the cognitively important structural properties?

» How to approximate cognitive complexity?



MARBLE DROP GAME
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MARBLE DROP GAME



ALTERNATION TYPE ~ LEVELS OF REASONING

Definition

Let's assume that the players strictly alternate in the game. Then:
1. In a A} tree all the nodes are controlled by Player /.
2. Ina AL tree, k-alternations, starts with an /ith Player node|

| .1 r
RN
(1, t2) | t,2 r
RN
(s1, s2) | u,1 r
RN

Figure : A} -tree



PAY-OFF STRUCTURES

| S, 1 X | S, 1 X
VAN SN\
999, 1 | t,1 X 55 | t,2 '
VRN VRN
3,4 | u,2 ' 12, 14 | u,1 '
VRN VAN
5 17 Iw,1r 57 Iw,1r
VRN S\
8,19 0,0 16, 8 4.6

Figure : Two A] trees.



PAY-OFF STRUCTURES
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| S, 1 X | S, 1 X
VAN SN\
999, 1 | t,1 X 5 5 | t,2 '
VRN SN\
3,4 | u,2 ' 12, 14 | u,1 '
VAN VAN
5 17 Iw,1 ' 5,7 IW,1 .
VAN S\
8,19 0,0 16, 8 4.6

Figure : Two A] trees.

Forward reasoning + backtracking as an algorithmic model of the task



ACCESSIBLE VS. NON-ACCESSIBLE

S
O .
~— highest payoff
™ inaccessible
~~ :
O o accessible
3 o
&
N L
I_ o
¥ o _ ne
5 O
@)
1
&
T 0 _
E (0@
=
o)

Szymanik et al.’13,



SIMULATING THE ALGORITHM

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Hypothesis

For an average random game with 3 decision points, the forward reasoning
plus backtracking algorithm needs fewer computation steps to yield a correct
solution than backward induction.

Table : Cross-table of payoff structures and the necessary number of steps when using
forward reasoning with backtracking on all 576 possible experimental pay-off structures.

# of steps 1 2 4 5 6 8
# of payoff structures 288 72 48 56 16 96

On average: Bl=6 and FRB=3

(Szymanik et al. 2013, CogSci)



FINALLY, FRB FITS EYE-TRACKING DATA

Data-driven

Eye-movements

Meijering et al.”’12



FINALLY, FRB FITS EYE-TRACKING DATA

Data-driven

Eye-movements

Meijering et al.”’12



FRB PREDICTS RT

Forward Reasoning plus Backtracking

o

Reaction times (sec)

Steps

Szymanik et al.’13,



WHY FRB?

FRB avoids higher-order reasoning
Heuristics to avoid higher-order reasoning
Normative question: Which are good?

Descriptive question: Which are used?

Yy Y Y Y Y

Strategic ability as a collection of algorithms.



IS THERE A TRANSFER BETWEEN FALSE

BELIEF TASK AND GAMES?

Are the two task tapping into the same cognitive skills?



COURSE SUMMARY & DISCUSSION

Logic helps to rigorously formulate cognitive problems

Logic informs about intrinsic properties of a problem

Often inspires cognitive models and experimental paradigms
Which logic to choose? Only one logic of a task?

What about learning/developmental perspective?

How to go beyond normativity, accounting for errors?

Yy Y Y Y Y VY Y

How to go from descriptive to processing perspective?
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