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Opening



Informal vs Formal (1)

Let us begin with a rather general question:

What is a mathematical theory?

One can approach such a question in (at least) two different ways:
1 By giving a catalogue of real mathematical theories, as they do

appear in the practice – e.g., Peano Arithmetic, ZFC, Group Theory,
Ring Theory, etc. – and then highlighting similarities between them (if
any);

2 Or, by saying something like: “A theory is a set of sentences closed
under logical implication”. Indeed, a version of this latter definition is
contained in almost any modern logic textbook.

Of course quite the same can be said about the question: What is a
mathematical proof?
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Informal vs Formal (2)

As is clear, things get philosophically interesting if considering the
following compelling problem:

Does the formal definition of theory (resp. proof) provided in 2 fully
capture the kind of theories (proofs) encompassed in 1?

Let us call formalists those answering positively to this question. Then, a
formalist would typically defend also the following thesis:

Formalist Thesis (FT)
Axiomatic mathematical theories are best represented as Formal systems

As a matter of fact, a growing number of philosophers of mathematics
argue that FT does not hold (e.g., consider the practical turn advocated
by the so-called Philosophy of Mathematical Practice).
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Against the formalist view of mathematics

In particular, the idea that informal mathematics is not reducible to its
formal side dates back to Lakatos’ celebrated work:

Lakatos, Proof and Refutations (1976)
The subject matter of metamathematics is an abstraction of mathematics
in which mathematical theories are replaced by formal systems [. . .]. [But]
there are problems which fall outside the range of metamathematical
abstractions. Among these are problems relating to informal mathematics
and to its growth, and all problems relating to the situational logic of
mathematical problem-solving. [. . .] Formalist disconnects the history of
mathematics from the philosophy of mathematics, since, according to
formalist concept of mathematics, there is no history of mathematics
proof. [. . .] According to formalist, mathematics is identical with
formalised mathematics.
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Which problems emerge within the formalist account?

In line with Lakatos’ ideas, scholars (especially in the very last decades)
have been produced a cluster of examples in which the mathematical
activity seem to be disconnected with its logical idealization:

Non-deductive methods in mathematics (Baker, 2009);
Gaps in mathematical proofs (Fallis, 2003);
Visual and diagrammatic reasoning (Manders, 1995);
Fruitfulness of mathematical concepts (Tappenden, 2008);
Trial and error processes (Magari, 1974 - A., 2015).
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Thinking about informal proofs

The above list already suggests that these remarks refer to various aspects
of mathematical practice, and it is difficult to find a common denominator
for them:

Larvor, How to think about informal proofs, 2012
The philosophy of mathematical practice prides itself on paying attention
to the proofs that mathematicians offer each other, rather than the
abstract models of proofs studied in formal logic. [. . .] However, it remains
somewhat under-theorised. Among other things, the field lacks an
explication of ‘informal proof’ as it appears in expressions such as ‘the
informal proofs that mathematicians actually read and write’. Without this,
it is difficult to explain how studies of practice might diagnose and
overcome the short-comings of those approaches that take formal logic to
supply an adequate account of mathematical inference.
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A mere advertisement?

Thus part of the contemporary debate in philosophy of mathematics is
somewhat stuck between:

1 the general idea that real mathematical theories differ from formal
systems;

2 and yet the fact that most of this difference is presented by means of
referring to some very non-logical aspects of mathematics, and these
presentations sometimes “amounts to more than a mere
advertisement for a future theory of informal [. . .] provability”
(Leitgeb, 2012).
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Our proposal

In the present work, we propose to adopt a middle way.

We aim thus to describe a logical model – introduced in (Magari, 1974) –
that extend formal systems in a way that is much more sensible to certain
aspects of real mathematical theories that are classically neglected.

Of course this does not mean that these models are generally safe or
immune from the kind of arguments anti-formalists typically present.
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Outline

So, in what follows:

1 We recall a little known definition of Roberto Magari, that of
dialectical system;

2 We study how these systems meet the very philosophical ideas for
which they have been introduced; in doing so, we introduce a more
general class of systems, that of quasidialectical systems;

3 We prove several mathematical results concerning both systems. In
particular we compare the two systems with respect to both their
informational content and the class of sets they “represent”;

4 Finally, we discuss how to equip these systems with additional rules
which mimic that of classical logic.
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Dialectical systems



Roberto Magari

Roberto Magari (1934-1994)

The needs that are pushing one to
modify the theory taken as
metamathematics have the same
nature as those pushing physicists or
any natural scientist.

R. Magari. Su certe teorie non enumerabili. Ann. Mat. Pura Appl. (4),
XCVIII:119-152, 1974.
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Trial and error, experimentation, guesswork

Paul Halmos (1916-2006)

Mathematics is not a deductive
science – that’s a cliché. When you
try to prove a theorem, you don’t
just list the hypotheses, and then
start to reason. What you do is trial
and error, experimentation,
guesswork.
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A weakness of formal systems: staticity

Consider the following aspect of formal systems:

Formal systems represent mathematical theories in a rather static way in
which axioms of the represented theory are given once for all at the very
beginning, and no further modification is permitted.

This seems to be in contrast with several historical examples: e.g., the
main goal of “Proof and Refutations” is precisely to support the idea that
mathematical theories can be the output of a much more dynamic
processes, consisting also of refinements, adjustments, and trial-and-errors.
Formal systems are essentially blind to all of these devices.

Magari’s original idea, then, was precisely to provide an extension of
formal systems that would be able to capture this dynamic feature.
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An informal description of a dialectical system

The basic ingredients of a dialectical system are a number c, called a
contradiction; a deduction operator H that tells us how to derive
consequences from a finite set A of assumptions; a proposing function,
i.e. a computable function f that proposes axioms, to be accepted or
rejected as provisional theses of the system.

For sake of simplicity, in what follows we will always denote f (i) by fi .

If up to a given stage we have accepted the axioms f (i1), . . . , f (in), with
i1 < · · · < in, and at this stage we see that we can derive c from
f (i1), . . . , f (im), for a least m ≤ n, then we temporarily reject f (im), still
accept f (i1), . . . , f (im−1), and we are willing to add (perhaps again)
f (im + 1) to our working assumptions; on the other hand, if we see that c
does not arise, then we are willing to add f (in + 1) to our working
assumptions.
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Dialectical System: Definition
Definition
A dialectical system is a triple d = 〈H, f , c〉 such that:

f is a computable permutation of ω;
c ∈ ω;
H is an enumeration operator such that H({c}) = ω and H(∅) 6= ∅;

moreover H satisfies the followin, for all X ⊆ ω,
X ⊆ H(X );
H(H(X )) ⊆ H(X )

(i.e., H is a algebraic closure operator).

Recall that an enumeration operator H is a c.e. set, and

H(X ) = {x : 〈x ,D〉 ∈ H & D ⊆ X}

where D is a finite set. We often refer to computable approximations {Hs} to a
given enumeration operator H.
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How does it work?

At stage s, we have a finite set As of provisional theses (to be thought as
axioms currently accepted by the system), and we propose a new axiom.

1 We start off with A0 = ∅. At stage 0, we propose f0;
2 Suppose at s we have proposed fm. Two cases:

1 c /∈ Hs(As ∪ {fm}): let

As+1 = Hs+1(As ∪ {fm}),

and propose fm+1;
2 there is a least z ≤ m, such that c ∈ Hs({fi ∈ As : i ≤ z} ∪ {fm}),

then let
As+1 = Hs+1({fj ∈ As : j < z}),

and propose fz+1.
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Case 1: No contradiction: Just go on!

10

f0

2 4 53

f3 f5

m

fm

Configuration at s

10

f0

2 43

f3

Configuration at s + 1, via clause (1)

5

f5

m

fm

m + 1

fm+1

Provisional theses
As = Hs({f0, f3, f5, . . .}); at previous stage we proposed fm

As+1 = Hs+1({f0, f3, f5, . . . , fm}); propose fm+1.
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Case 2. Has c appeared? Then discard and try again!
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Configuration at s
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f3

Configuration at s + 1, via clause (2)

5
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z z + 1

fz+1

z + 1 m

fm

c

Provisional thesis
As = Hs({f0, f3, f5, . . . , fz , . . .}); at previous stage we proposed fm

As+1 = Hs+1({fj ∈ As : j < z}); propose fz+1.
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Final theses and dialectical set

Definition
Let d be a dialectical system. The set Ad of the final theses of d is defined
as follows:

Ad = {x : (∃t)(∀s ≥ t)[x ∈ As ]}.

Thus, the final theses of d can be seen as playing the role of the theorems
of d , as those theses that eventually are accepted by the system.

Definition
A set D is called dialectical if there is a dialectical system d s.t. D = Ad .

For all dialectical systems d = 〈H, f , c〉, it can be shown that Ad is
invariant with respect to how we approximate H.
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Dialectical sets and the arithmetical hierarchy
In order to characterize the informational content of dialectical systems
(and compare it with that of formal systems), we shall ask the following
natural question:

How dialectical systems are distributed within the arithmetical hierarchy?
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Dialectical sets are ∆0
2 (1)

First, notice that, from the definition of final theses, it follows immediately
that every dialectical set is Σ0

2. Indeed

x ∈ Ad ⇔ (∃t)(∀s ≥ t)[x ∈ As ].

Yet, Magari showed that we can improve this fact as follows:

Theorem. (Magari)
For every dialectical system d , the corresponding dialectical set Ad is ∆0

2.
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Dialectical sets are ∆0
2 (2)

This latter result can be proved by making use of the following useful
characterization of Ad :

Lemma
Let d be a dialectical system. For every x ,

fx ∈ Ad ⇔ c /∈ H(Ad ∩ {fy : y < x} ∪ {fx}).

Therefore, whether some axiom fx belongs to Ad is something that is fully
determined by the behaviour of only those axioms that are proposed before
fx .
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All Π0
1 sets are dialectical

In particular any co-c.e. set is dialectical.

Theorem (Magari)
If A is a Π0

1 set such that A 6= ω, then A is dialectical.

Proof
Let A (6= ∅ and 6= ω) be a Π0

1 set, and choose a ∈ A and c ∈ Ac . Define

H = {〈c, {x}〉 : x /∈ A} ∪ {〈a, ∅} ∪ {〈x , {x}〉 : x ∈ ω}.

Notice that H is c.e. and is an algebraic closure operator. Take
d = 〈H, f , c〉, where f is the identity. It is easy to see that A = Ad .
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Every c.e. dialectical set is computable
Nonetheless not all ∆0

2 sets are dialectical!

Theorem (Magari)
No noncomputable c.e. set is dialectical.

Proof
Let A be a c.e. set. Consider the following function

ϕ(fx ) =

{
1 fx ∈ Ad

0 c ∈ H(Ad ∩ {fy : y < x} ∪ {fx})

By Magari’s lemma, we have that ϕ is the characteristic function of
Ad .

Moreover, ϕ is computable (to compute ϕ(fx ) list Ad and H and wait
until either fx ∈ Ad or H derives a contradiction from
(Ad ∩ {fy : y < x} ∪ {fx})). Hence, if Ad is c.e. then it must be
computable.
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Dialectical degrees

Definition
We say that a Turing degree is dialectical if it contains a dialectical set.

One of the main questions left open in (Magari, 1975) paper is that of
characterizing dialectical degrees.

Yet, before answering to this question, let us introduce the second class of
systems we focus on.
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Quasidialectical systems



From dialectical to quasidialectical systems

Do dialectical systems really match Magari’s informal intuition of a
mathematical theory that, in choosing its axioms, proceeds by trial and
error?

A fully positive answer appears to be constrained by the lack, within
dialectical systems, of one of the key features of trial and error processes,
namely some notion of revision by which our statements, in presence of a
possible problem, are not discarded but rather substituted.

Dialectical systems seem to be unfit for such cases, since each
contradiction imposes to discard the axiom, and no substitution, or
refinement, is considered.
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The case of geometry

Euclidean geometry
1 Any two points can be joined by a straight line.
2 Any straight line segment can be extended indefinitely in a straight

line.
3 Given any straight line segment, a circle can be drawn having the

segment as radius and one endpoint as center.
4 All right angles are congruent.
5 The parallel postulate: Through a point not on a given straight line,

one and only one line can be drawn that never meets the given line.
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The case of geometry

Spherical geometry
1 Any two points can be joined by a straight line.
2 Any straight line segment can be extended indefinitely in a straight

line.
3 Given any straight line segment, a circle can be drawn having the

segment as radius and one endpoint as center.
4 All right angles are congruent.
5 The parallel postulate: There are NO parallel lines.
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The case of geometry

Hyperbolic geometry
1 Any two points can be joined by a straight line.
2 Any straight line segment can be extended indefinitely in a straight

line.
3 Given any straight line segment, a circle can be drawn having the

segment as radius and one endpoint as center.
4 All right angles are congruent.
5 The parallel postulate: There are NO parallel lines.Through a point

not on a given straight line, infinitely many lines can be drawn that
never meet the given line.
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From dialectical to quasidialectical systems, continued

Thus, we propose to modify Magari’s original definition by introducing
some new systems (that we call quasidialectical systems) apt to
accommodate this idea of revision.

Then, we will compare them to dialectical systems in terms of their
expressiveness and information content, thus verifying whether such a
notion of revision can be already embedded in Magari’s systems.
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From dialectical to quasidialectical systems, continued

Quasidialectical systems extend standard dialectical systems with two
additional symbols: c− and f −. Roughly, the role of f − is that of replacing
a certain axiom, that has produced some kind of problem, formally
encoded by c−, with another axiom. Thus, while c represents the
mathematical contradiction, c− corresponds to a large variety of possible
problems that might lead a mathematician to replace an axiom.

At the very high level of generality in which our presentation is pursued,
the specific nature of these kind of problems is disregarded. That is, we do
not want to commit ourselves to the specific semantic status of c−.
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mathematical contradiction, c− corresponds to a large variety of possible
problems that might lead a mathematician to replace an axiom.

At the very high level of generality in which our presentation is pursued,
the specific nature of these kind of problems is disregarded. That is, we do
not want to commit ourselves to the specific semantic status of c−.
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From dialectical to quasdialectical systems, continued

On the contrary, our aim is to keep the intended meaning of c− vague
enough to incorporate a wide class of problems. These problems do not
necessarily pertain to the formal side of the mathematical practice. Indeed,
due to the generality of our proposal, they might include problems related
to that kind of informal desiderata one can expect from an axiom, such as
fruitfulness, or simplicity – or even psychological and aesthetic features,
these latter being fully admissible as long as they can represent some
reason to replace a given axiom.
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Quasidialectical System: Definition

Definition (A1)
A quasidialectical system q is a quintuple q = 〈H, f , f −, c, c−〉, such that
the following conditions hold:

1 〈H, f , c〉 is a dialectical system;
2 c− ∈ ω;
3 f − is a total computable function and c− /∈ range(f −);
4 f − is acyclic, i.e., for every x , the f −-orbit of x is infinite.
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Why f − has to be acyclic?

We want to restrict ourselves to systems in which the operation of
replacement is somewhat always enriching, in the following sense. Suppose
we find some axiom unsatisfactory (again, this could be for a plenty of
different reasons). Then we replace it. Later on, some problem occurs with
this latter axiom, and thus we replace it too, with a third one. Now, if one
aims at harmonizing the definition of f − with some informal idea of “trial
and error”, in which knowledge is obtained through a process of refining
subsequent proposals, then it is natural to ask that this third axiom is
different from the first one we already replaced. Being acyclic just
generalizes this intuition.
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How does it work?

At stage s, we have a finite set As of provisional theses, and we propose
an axiom, or an ordered pair of two axioms.

We also have a computable function rs(i) where for each i , rs(i) = 〈〉, or
rs(i) = 〈fi , f −(fi ), . . . , (f −)ni 〉 for some ni : we call rs(i) the stack at i , at
stage s; by ρs(i) we denote the top of the stack rs(i), i.e.

ρs(i) =

{
∅, rs(i) = ∅;
(f −)n1(fi ), if rs(i) = 〈fi , f −(fi ), . . . , (f −)ni 〉 for some i ;

there is a greatest m such that rs(m) 6= 〈〉, and in this case rs(m) = 〈fm〉;
and we denote by Ls(i) = {ρs(j) : j < i and rs(y) 6= 〈〉}.
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How does it work, continued

1 We start off with A0 = ∅. Let r0(0) = 〈f0〉; all other stacks are empty.

empty;
2 Suppose, at stage s, m is the greatest such that rs(m) 6= 〈〉.

Three cases:
1 c, c− /∈ H(Ls(m) ∪ {ρs(m)}): define rs+1(m + 1) = 〈fm+1〉, and

rs+1(i) = rs(i) otherwise, and let As+1 = Hs+1(Ls+1(m));
2 there is a least z ≤ m such that, ρs(z) 6= ∅, and

c ∈ H(Ls(z) ∪ {ρs(z)}): then let rs+1(i) = rs(i), if i < z ,
rs+1(z + 1) = 〈fz+1〉, empty all other stacks, and let
As+1 = Hs+1(Ls+1(z + 1));

3 there is a least z ≤ m such that, ρs(z) 6= ∅, and
c− ∈ H(Ls(z) ∪ {ρs(z)}), but c /∈ H(Ls(z) ∪ {ρs(z)}): then let
rs+1(i) = rs(i), if i < z , rs+1(z) = 〈rs(z)af −(ρs(z))〉,
rs+1(z + 1) = 〈fz+1〉, empty all other stacks, and let
As+1 = Hs+1(Ls+1(z + 1)).

(notice that, in case of conflict between c and c−, the system considers only c)
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Neither c , nor c−: Just go on!
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Configuration at s

Provisional theses

As = Hs(Ls(m)) = {(f −)n0(f0), (f −)n3(f3), f5, . . .}

As+1 = {(f −)n0(f0), (f −)n3(f3), . . . f5, fm}; propose fz+1.
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Has c appeared? Then substitute and again!
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As = Hs(Ls(m)) = {(f −)n0(f0), (f −)n3(f3), f5, . . . , (f −)nz (fz), (f −)nz+1(fz+1), . . . , fm}

As+1 = same as As up to z = {(f −)n0(f0), (f −)n3(f3), . . . f5, . . .}; propose fz+1.

Luca San Mauro (TU Wien) Trial and error mathematics Checiny 2016 36 / 65



Has c appeared? Then substitute and again!

10

(f−)n0(f0)

f0

2 43

(f−)n3(f3)

f3

Configuration at s + 1, via clause (2)

5

f5

z

10

(f−)n0(f0)

f0

2 4 53

(f−)n3(f3)

f3 f5

Configuration at s

z

(f−)nz (fz)

fz

z + 1

(f−)nz+1(fz+1)

fz+1

m

fm

z + 1

fz+1

c

Provisional theses

As = Hs(Ls(m)) = {(f −)n0(f0), (f −)n3(f3), f5, . . . , (f −)nz (fz), (f −)nz+1(fz+1), . . . , fm}
As+1 = same as As up to z = {(f −)n0(f0), (f −)n3(f3), . . . f5, . . .}; propose fz+1.

Luca San Mauro (TU Wien) Trial and error mathematics Checiny 2016 36 / 65



Has c appeared? Then substitute and again!

10

(f−)n0(f0)

f0

2 43

(f−)n3(f3)

f3

Configuration at s + 1, via clause (2)

5

f5

z

10

(f−)n0(f0)

f0

2 4 53

(f−)n3(f3)

f3 f5

Configuration at s

z

(f−)nz (fz)

fz

z + 1

(f−)nz+1(fz+1)

fz+1

m

fm

z + 1

fz+1

c

Provisional theses

As = Hs(Ls(m)) = {(f −)n0(f0), (f −)n3(f3), f5, . . . , (f −)nz (fz), (f −)nz+1(fz+1), . . . , fm}
As+1 = same as As up to z = {(f −)n0(f0), (f −)n3(f3), . . . f5, . . .}; propose fz+1.

Luca San Mauro (TU Wien) Trial and error mathematics Checiny 2016 36 / 65



Has c− appeared? Then substitute and again!
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As+1 = {(f −)n0(f0), (f −)n3(f3), . . . f5, . . .}; propose f −((f −)nz (fz)), fz+1.
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Final theses and quasidialectical sets

Let q be a quasidialectical system and let us fix a computable
approximation α = {Hs}s∈ω to H.

Definition
Let q be a quasidialectical system. The definition of the set of final theses
Aαq of q is analogous to that of dialectical systems:

Aαq = {x : (∃t)(∀s ≥ t)[x ∈ As ]}

Definition
A set Q is called quasidialectical if there is a quasidialectical system q such
that A = Aαq , for some quasidialectical system q, and for some
approximation α to H.
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The dependence of the final theses from the
approximations

A major difference with respect to dialectical systems is that the set of
final theses depends now on which computable approximation to the
enumeration operator one chooses.

Let us show this with an example.
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Example of q dependent on the approximations
Consider the quasi-dialectical system q = 〈H, f , f −, c, c−〉, where fx = x ,
f −(x) = x + 2, c = 1, c− = 2, and

H = {〈y , {2x + 1}〉 : x , y ∈ ω} ∪ {〈0, ∅〉} ∪ {〈y , {y}〉 : y ∈ ω}.

It is easy to see that H is a closure operator, and that there exist
computable approximations α and β to H, such that

in α for every x , the axiom 〈c−, {2x + 1}〉 comes before 〈c, {2x + 1}〉, so
that when processing 2x + 1, the pair (q, α) so that the second case of the
quasi-dialectical procedure would be used;

on the contrary, in β for every x , the axiom 〈c, {2x + 1}〉 comes before
〈c−, {2x + 1}〉, so that the third case of the definition of the
quasi-dialectical procedure would be used.

α and β give rise to different quasi-dialectical sets: Aαq = {0}, whereas, for
instance 4 ∈ Bβ

q . Moreover, functions rαs (x), ραs (x) have different
“asymptotic” behavior from rβs (x), ρβs (x) yielded by β; in particular, we
have that {ραs (1) : s ∈ ω} is infinite!
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Approximated quasidialectical systems

Hence, we shall agree on the following definition:

Definition
An approximated quasidialectical system is a pair (q, α) where q is a
quasidialectical system q = 〈H, f , f −, c, c−〉, and α is a computable
approximation to H.
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Quasidialectical systems with loops

The fact that approximated quasidialectical systems as (q, α) of the last
example do exist is not just a matter of curiosity. Indeed, it shows that an
approximated quasidialectical system might fail to propose all the axioms.
In order to characterize such cases, consider the following definition:

Definition
Let (q, α) be an approximated quasidialectical system, and y be a slot. We
say that (q, α) has a loop over y if {ρs(y) : s ∈ ω} is infinite. If (q, α) has
no loops, we call it loopless.

Therefore, a loop can be visualized as expressing an infinite ascending
stack of substitutions over some slot.
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Interpretation of loops

To fit loops in our intuitive interpretation is not completely
straightforward. Recall Magari’s idea of dialectical systems as representing
the behavior of a mathematician – or even of a mathematical community –
while facing possible contradictions. According to this scenario,
quasidialectical systems with loops would describe a mathematical
community in which the overall progression of the theory is indeterminately
interrupted by a never-ending refinement of a single axiom – a kind of
behavior that might be jokingly compared with Kafkian bureaucracy.
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Interpretation of loops, continued

However, loops are not so pathological within the theory of quasidialectical
systems:

1 Every f −-orbit of a given axiom must be infinite. Thus, in principle
one cannot rule out the possibility of building an infinite ascending
stack over some axiom (of course, whether or not this happens
depends on the operator H, and how we approximate it)

2 Even if at first sight quasidialectical systems with loops may appear,
to some extent, stupid, they can represent sets (namely c.e.
noncomputable sets) that sets out of reach of dialectical systems.

Moral of the story: not all bureaucracy is pointless!
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Characterizing quasidialectical systems with loops

The next lemma, which can be proven by induction on y , tells us when to
expect stability for a given set of axioms.

Lemma (stability)
Let (q, α) be an approximated quasi-dialectical system, and y a slot. If for
each x ≤ y, the pair (q, α) has no loop over x, then lims rs(y) exists, i.e.
there is a stage t such that, for every s ≥ t, rs(y) = rt(y).

Intuitively, this last result might be understood as stating that there is no
loss of information – in terms of the axioms proposed – in working after
the stabilization of a given L(x). Indeed, the result shows that any axiom
fx is proposed after stabilization of L(x).
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Characterizing q.s. with loops, continued

Lemma
Let (q, α) be an approximated quasi-dialectical system with loops. Then
Aαq is a c.e. set.

Proof
Call b the least slot over which the pair (q, α) has a loop. By
Stability-Lemma, there must be a stage t such that, for all s ≥ t,
Ls(b) = Lt(b): call X = Lt(b).Clearly H(X ) is a c.e. set, since X is finite.
It is left to show that Aαq = H(X ). The inclusion ⊇ is obvious, since for
every s ≥ t, X ⊆ Ls(h(s)).To show Aαq ⊆ H(X ), just notice that at every
stage s ≥ t at which we add an axiom over b, we define the set of
provisional theses to be Hs(X ). Thus no element not in H(X ) can be a
final thesis.
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Characterizing q.s. with loops, continued
Recall that a c.e. set is said to be simple, if its complement is infinite, and does
not contain any infinite c.e. set. As we can see through the next lemma, simplicity
gives us a restraint on the kind of information that can be encoded within a loop.

Lemma
Let A be a c.e. set. Then there exists an approximated quasi-dialectical
system (q, α) with loops such that Aαq = A if and only if A is coinfinite
and not simple.

Proof
(⇐): If A is coinfinite and not simple, then there exists an infinite c.e. subset
B ⊆ A. Let b = min B.Consider a quasidialectical system, q = 〈H, f , f −, c, c−〉,
where f is the identity, f − is any 1-1 computable function such that
range(f −) ⊆ B, c 6= c− and c, c− ∈ A r B , and H satisfies H(∅) = A,
c− ∈ H({x}) if and only if x ∈ B.It is clear that whatever approximation α we
work with, we have a loop over b, and clearly for every such α, Aq = Aαq = A.
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Proof, continued
(⇒): Suppose that A is c.e. and there is an approximated quasi-dialectical
system (q, α) with loops, and Aαq = A. Let b the least slot such that there
is a loop over b.

It is immediate to see that orbf −(b) is an infinite c.e. set.
We claim that orbf −(b) ⊆ A.So, suppose that some fy ∈ orbf −(b) belongs
to A. As A = Aαq this means that fy ∈ Aαq .By Stability-Lemma, there must
be a stage t such that, for all s ≥ t, Ls(b) = Lt(b): call X = Lt(b). So, as
in the proof of the previous lemma, we would have that fy ∈ H(X ).But
since fy belongs to the loop over b, we must have c− ∈ H(X ∪ {fy}).On
the other hand, as H is a closure operator, we have X ⊆ H(X ), so by
{fy} ⊆ H(X ), we get

H(X ∪ {fy}) ⊆ H(H(X )) = H(X ).

Thus, at some stage s > t, we would see c− ∈ Hs(X ), contrary to the fact
that L(b) does not change after t.
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{fy} ⊆ H(X ), we get
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Characterizing q.s. with loops, continued

The conjunction of the last two lemmas give us the following
characterization theorem for quasi-dialectical systems with loops:

Theorem (A1)
The sets that are representable by approximated quasidialectical systems
(q, α) with loops are exactly the c.e. sets that are coinfinite and not simple.
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Locality for loopless quasidialectical systems

We move to loopless approximated quasidialectical system.

The next lemma states a sort of locality result: even if a quasidialectical
system, by means of the revising function f −, might heavily modify the
order in which axioms are tested, what really counts for an axiom fx to be
a final thesis is whether or not fx has eventually x among its slots.

Lemma (locality)
Let (q, α) be a loopless approximated quasi-dialectical system. Then
fy ∈ Aαq if and only if

(∃t)(∀s ≥ t)[rs(y) = 〈fy 〉] (and thus ρs(y) = fy )

Thus, the expressiveness of a quasi-dialectical system without loops, by which it
might propose an axiom several times, ends up with a sort of redundancy: among
all possible occurrences of fx in the list of proposed axioms, what really counts is
the one that has been proposed at slot x .
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Quasidialectical sets are ∆0
2

Recall that all dialectical sets are ∆0
2. We can now prove that the same

holds for quasidialectical sets.

Theorem
For every approximated quasi-dialectical system (q, α), the
quasi-dialectical set Aαq is ∆0

2.

Proof
This is certainly true if (q, α) has loops.If (q, α) is loopless, then by Stability
Lemma and Locality Lemma, we have that for every x , lims rs(x) = r(x) and
lims ρs(x) = ρ(x) exist.Define As = {fy : ρs(y) = fy}.It is clear from Lemma 3.14
that

fy ∈ Aq ⇔ (∃t)(∀s ≥ t)[fy ∈ As ].

Moreover lims As(fy ) exists for every y , as after the stage s0 at which we propose
rs0 (y) = 〈fy 〉, and each r(x), with x < y , has reached limit, once we change ρ(y)
we can never go back at any future stage s to ρs(y) = fy , by f − being
acyclic.Thus the computable sequence {As}s∈ω of sets is a ∆0

2 approximation to
Aαq .

Luca San Mauro (TU Wien) Trial and error mathematics Checiny 2016 51 / 65



Quasidialectical sets are ∆0
2

Recall that all dialectical sets are ∆0
2. We can now prove that the same

holds for quasidialectical sets.

Theorem
For every approximated quasi-dialectical system (q, α), the
quasi-dialectical set Aαq is ∆0

2.

Proof
This is certainly true if (q, α) has loops.If (q, α) is loopless, then by Stability
Lemma and Locality Lemma, we have that for every x , lims rs(x) = r(x) and
lims ρs(x) = ρ(x) exist.Define As = {fy : ρs(y) = fy}.It is clear from Lemma 3.14
that

fy ∈ Aq ⇔ (∃t)(∀s ≥ t)[fy ∈ As ].

Moreover lims As(fy ) exists for every y , as after the stage s0 at which we propose
rs0 (y) = 〈fy 〉, and each r(x), with x < y , has reached limit, once we change ρ(y)
we can never go back at any future stage s to ρs(y) = fy , by f − being
acyclic.Thus the computable sequence {As}s∈ω of sets is a ∆0

2 approximation to
Aαq .

Luca San Mauro (TU Wien) Trial and error mathematics Checiny 2016 51 / 65



Quasidialectical sets are ∆0
2

Recall that all dialectical sets are ∆0
2. We can now prove that the same

holds for quasidialectical sets.

Theorem
For every approximated quasi-dialectical system (q, α), the
quasi-dialectical set Aαq is ∆0

2.

Proof
This is certainly true if (q, α) has loops.

If (q, α) is loopless, then by Stability
Lemma and Locality Lemma, we have that for every x , lims rs(x) = r(x) and
lims ρs(x) = ρ(x) exist.Define As = {fy : ρs(y) = fy}.It is clear from Lemma 3.14
that

fy ∈ Aq ⇔ (∃t)(∀s ≥ t)[fy ∈ As ].

Moreover lims As(fy ) exists for every y , as after the stage s0 at which we propose
rs0 (y) = 〈fy 〉, and each r(x), with x < y , has reached limit, once we change ρ(y)
we can never go back at any future stage s to ρs(y) = fy , by f − being
acyclic.Thus the computable sequence {As}s∈ω of sets is a ∆0

2 approximation to
Aαq .

Luca San Mauro (TU Wien) Trial and error mathematics Checiny 2016 51 / 65



Quasidialectical sets are ∆0
2

Recall that all dialectical sets are ∆0
2. We can now prove that the same

holds for quasidialectical sets.

Theorem
For every approximated quasi-dialectical system (q, α), the
quasi-dialectical set Aαq is ∆0

2.

Proof
This is certainly true if (q, α) has loops.If (q, α) is loopless, then by Stability
Lemma and Locality Lemma, we have that for every x , lims rs(x) = r(x) and
lims ρs(x) = ρ(x) exist.

Define As = {fy : ρs(y) = fy}.It is clear from Lemma 3.14
that

fy ∈ Aq ⇔ (∃t)(∀s ≥ t)[fy ∈ As ].

Moreover lims As(fy ) exists for every y , as after the stage s0 at which we propose
rs0 (y) = 〈fy 〉, and each r(x), with x < y , has reached limit, once we change ρ(y)
we can never go back at any future stage s to ρs(y) = fy , by f − being
acyclic.Thus the computable sequence {As}s∈ω of sets is a ∆0

2 approximation to
Aαq .

Luca San Mauro (TU Wien) Trial and error mathematics Checiny 2016 51 / 65



Quasidialectical sets are ∆0
2

Recall that all dialectical sets are ∆0
2. We can now prove that the same

holds for quasidialectical sets.

Theorem
For every approximated quasi-dialectical system (q, α), the
quasi-dialectical set Aαq is ∆0

2.

Proof
This is certainly true if (q, α) has loops.If (q, α) is loopless, then by Stability
Lemma and Locality Lemma, we have that for every x , lims rs(x) = r(x) and
lims ρs(x) = ρ(x) exist.Define As = {fy : ρs(y) = fy}.

It is clear from Lemma 3.14
that

fy ∈ Aq ⇔ (∃t)(∀s ≥ t)[fy ∈ As ].

Moreover lims As(fy ) exists for every y , as after the stage s0 at which we propose
rs0 (y) = 〈fy 〉, and each r(x), with x < y , has reached limit, once we change ρ(y)
we can never go back at any future stage s to ρs(y) = fy , by f − being
acyclic.Thus the computable sequence {As}s∈ω of sets is a ∆0

2 approximation to
Aαq .

Luca San Mauro (TU Wien) Trial and error mathematics Checiny 2016 51 / 65



Quasidialectical sets are ∆0
2

Recall that all dialectical sets are ∆0
2. We can now prove that the same

holds for quasidialectical sets.

Theorem
For every approximated quasi-dialectical system (q, α), the
quasi-dialectical set Aαq is ∆0

2.

Proof
This is certainly true if (q, α) has loops.If (q, α) is loopless, then by Stability
Lemma and Locality Lemma, we have that for every x , lims rs(x) = r(x) and
lims ρs(x) = ρ(x) exist.Define As = {fy : ρs(y) = fy}.It is clear from Lemma 3.14
that

fy ∈ Aq ⇔ (∃t)(∀s ≥ t)[fy ∈ As ].

Moreover lims As(fy ) exists for every y , as after the stage s0 at which we propose
rs0 (y) = 〈fy 〉, and each r(x), with x < y , has reached limit, once we change ρ(y)
we can never go back at any future stage s to ρs(y) = fy , by f − being
acyclic.Thus the computable sequence {As}s∈ω of sets is a ∆0

2 approximation to
Aαq .

Luca San Mauro (TU Wien) Trial and error mathematics Checiny 2016 51 / 65



Quasidialectical sets are ∆0
2

Recall that all dialectical sets are ∆0
2. We can now prove that the same

holds for quasidialectical sets.

Theorem
For every approximated quasi-dialectical system (q, α), the
quasi-dialectical set Aαq is ∆0

2.

Proof
This is certainly true if (q, α) has loops.If (q, α) is loopless, then by Stability
Lemma and Locality Lemma, we have that for every x , lims rs(x) = r(x) and
lims ρs(x) = ρ(x) exist.Define As = {fy : ρs(y) = fy}.It is clear from Lemma 3.14
that

fy ∈ Aq ⇔ (∃t)(∀s ≥ t)[fy ∈ As ].

Moreover lims As(fy ) exists for every y , as after the stage s0 at which we propose
rs0 (y) = 〈fy 〉, and each r(x), with x < y , has reached limit, once we change ρ(y)
we can never go back at any future stage s to ρs(y) = fy , by f − being
acyclic.

Thus the computable sequence {As}s∈ω of sets is a ∆0
2 approximation to

Aαq .

Luca San Mauro (TU Wien) Trial and error mathematics Checiny 2016 51 / 65



Quasidialectical sets are ∆0
2

Recall that all dialectical sets are ∆0
2. We can now prove that the same

holds for quasidialectical sets.

Theorem
For every approximated quasi-dialectical system (q, α), the
quasi-dialectical set Aαq is ∆0

2.

Proof
This is certainly true if (q, α) has loops.If (q, α) is loopless, then by Stability
Lemma and Locality Lemma, we have that for every x , lims rs(x) = r(x) and
lims ρs(x) = ρ(x) exist.Define As = {fy : ρs(y) = fy}.It is clear from Lemma 3.14
that

fy ∈ Aq ⇔ (∃t)(∀s ≥ t)[fy ∈ As ].

Moreover lims As(fy ) exists for every y , as after the stage s0 at which we propose
rs0 (y) = 〈fy 〉, and each r(x), with x < y , has reached limit, once we change ρ(y)
we can never go back at any future stage s to ρs(y) = fy , by f − being
acyclic.Thus the computable sequence {As}s∈ω of sets is a ∆0

2 approximation to
Aαq .

Luca San Mauro (TU Wien) Trial and error mathematics Checiny 2016 51 / 65



Comparing the two systems



Comparing the two systems

Recall that our initial motivation for introducing quasidialectical systems
was to verify if dialectical systems are robust enough not to be superseded
by the introduction of a more refined notion of revision.

With this goal in mind, we will compare dialectical and quasidialectical
systems by means of three different ways:

1 by showing that the notion of quasidialectical system generalize that
of dialectical system, in the sense that any dialectical set can be
represented by some properly designed quasidialectical system;

2 by comparing the overall computational power of dialectical and
quasidialectical systems;

3 and finally by investigating whether dialectical and quasidialectical
sets coincide or not.
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Any dialectical set is representable by a quasidialectical
system

First of al notice that every dialectical system is trivially a quasidialectical
system, by taking c = c−, with whatsoever f −. This can be even improved
to requiring c 6= c− in the definition of a quasidialectical systems (indeed,
all results in our papers assume c = c−).

Theorem
Every dialectical set A such that its complement has at least two elements,
is represented by a loopless approximated quasi-dialectical system with
c− 6= c, and the representation is independent of any computable
approximation to the enumeration operator of the quasidialectical system.
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Dialectical and quasidialectical degrees

Definition
A Turing degree (enumeration degree, respectively) is called dialectical if it
contains a dialectical set; and it is called quasidialectical if it contains a
quasidialectical set.

The following result shows that dialectical systems and quasi-dialectical
systems coincide with respect of their computational power. In other
words, we have that our notion of revision is already somehow encoded in
Magari’s original proposal.
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Dialectical and quasidialectical degrees, continued

Theorem
The dialectical Turing degrees and the quasidialectical Turing degrees
coincide: namely, they coincide with the c.e. Turing degrees.

Proof
The proof consists of two steps. We first show that every c.e. Turing
degree is a dialectical degree; and then we show that every quasidialectical
degree is a c.e. Turing degree. Since every dialectical set is quasidialectical,
the claim follows immediately.
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Every c.e. degree is dialectical

Lemma
For every c.e. set A there exists a dialectical system d = 〈H, f , c〉 such
that Ad ≡T A.

Proof
This is an immediate consequence of the fact that every Π0

1 set A 6= ω is
dialectical. Thus, if A is c.e. then A ≡T Ac , and Ac is dialectical.
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Every quasidialectical degree is c.e.
Lemma
If (q, α) is an approximated quasidialectical system, then Aαq has c.e.
Turing degree.

Let us first recall the following facts about ∆0
2 sets. Given a computable function

g(x , s) such that, for every x , g(x , 0) = 0, and lims g(x , s) exists, recall that the
least modulus function m for g , is the function

m(x) = µs. (∀t ≥ s)[g(x , t) = g(x , s)].

Notice that if A is a ∆0
2 set, such that χA(x) = lims g(x , s) (where g is a 0-1

valued computable function) and m is the least modulus function for g , then
A ≤T m. On the other hand, if B is the c.e. set

B = {〈x , s〉 : (∃t > s)[g(x , t) 6= g(x , s)]}

then B ≡T m. So a least modulus function has always c.e. Turing
degree.Therefore, if A is a ∆0

2 set, g(x , s) is a 0-1 valued computable function
such that χA(x) = lims g(x , s), for all x , m is the least modulus function for g ,
and m ≤T A, it follows that A has c.e. Turing degree.
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Every quasidialectical degree is c.e., continued
Proof
If (q, α) is an approximated quasidialectical system with loops, then the
claim is trivial (since Aαq is c.e.).

Let us consider the case when (q, α) is loopless. We already know that

As = {fx : ρs(x) = fx}

is a ∆0
2 approximation to Aαq .Let m be the least modulus function for this

approximation, or more precisely for the function

g(fx , s) =

{
1, if fx ∈ As ,

0, otherwise.

We now show how, using Aαq as an oracle, we can compute an upper
bound for m(fx ). Since f is a computable permutation, this immediately
will yield that m ≤T Aαq .
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Proof, continued
If sx is a stage such that for every y < x , rs(y) has already reached its
limit (with s0 = 0), then by the quasidialectical procedure, rs(x) can
change at a stage s + 1 > sx , only if rs+1(x) = rs(x)a〈ρs+1(x)〉, or if
rs(x) 6= 〈 〉 and rs+1(x) = 〈 〉. In the latter case, by choice of sx , for every
t ≥ s + 1 we have that rs+1(x) = 〈 〉.

By Locality Lemma, we know that if
r(x) 6= 〈 〉 then range(r(x)) ∩ Aαq = {ρ(x)}.
To compute sx+1 is thus enough to exploit the following algorithm, with
oracle Aαq :

search for the least stage s > sx such that either rs(x) = 〈 〉, or
ρs(x) ∈ Aαq .

It follows that, for every s ≥ sx+1, g(fx , s) = g(fx , sx+1), and thus
m(fx ) ≤ sx+1.
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Comparing the two systems, continued

It remains the problem of comparing the two systems from the point of
view of the sets they might represent (instead of just being concerned with
their degrees).

The following results state that even confining ourselves to loopless
quasidialectical systems, they represent a class of sets, which is much
larger than the one that is represented by dialectical systems, thus showing
the following corollary:

Corollary (A.)
There are loopless quasidialectical sets that are not dialectical.

In fact, much more can be proved, as shown next.
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Ershov hierarchy
Since both dialectical and quasidialectical sets are always ∆0

2 sets, in order
to compare them we need a way of comparing the complexity of ∆0

2 sets.
This is provided by the Ershov hierarcy (in which, intuitively, ∆0

2 sets are
ordered w.r.t. how many mistakes we make in our best approximations to
them).

Definition
We say that a set A is n-c.e. if there is a computable function g(x , s) such
that

1 χA = lims g(x , s), and g(x , 0) = 0 (thus
2 |{s : g(x , s + 1) 6= g(x , s)}| ≤ n.

Definition
A set A is ω-c.e. if there are computable functions g(x , s) and h(x) such
that, for every x ,

1 A(x) = lims g(x , s) and g(x , 0) = 0;
2 |{s : g(s + 1) 6= g(s)}| ≤ h(x).
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Idea of the proof

We first to prove that there are dialectical sets in each of the finite levels
of Ershov hierarchy.

Then, by diagonalizing over the class of finite levels of Ershov hierarchy,
we build a quasidialectical sets that is not dialectical (actually we do more:
we show that are quasidialectical sets in each of the infinite levels of
Ershov hierarchy).
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Further work



Future work

1 Dialectical, quasidialectical systems and logical connectives

I different logical systems;
I completion of formal theory.

2 Develop logic and semantic of quasidialectical systems;
3 Explore connections with Learning theory.
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Thank you!
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